Driven by their potential applications, vectorial optical fields with spatially inhomogeneous states of polarization within the cross section have drawn significant attention recently. This work intends to review some...Driven by their potential applications, vectorial optical fields with spatially inhomogeneous states of polarization within the cross section have drawn significant attention recently. This work intends to review some of the latest development of this rapidly growing field of optics and offer a general overview of the current status of this field in a few areas. Mathematical descriptions of generalized vectorial optical fields are provided along with several special examples. A time-reversal methodology for the creation of a wide variety of exotic optical focal fields with prescribed characteristics within the focal volume is presented. Recently developed methods for the generation of vectorial optical fields that utilize fiber lasers,digital lasers, vectorial optical field generator, metasurfaces or photoalignment liquid crystals are summarized. The interactions of these vectorial optical fields with various micro-and nano-structures are presented and the prospects of their potential applications are discussed. The connection of vectorial optical fields with higher dimensionality in quantum information is summarized.展开更多
Cylindrical vector beams and vortex beams,two types of typical singular optical beams characterized by axially symmetric polarization and helical phase front,possess the unique focusing property and the ability of car...Cylindrical vector beams and vortex beams,two types of typical singular optical beams characterized by axially symmetric polarization and helical phase front,possess the unique focusing property and the ability of carrying orbital angular momentum.We discuss the formation mechanisms of such singular beams in few-mode fibers under the vortex basis and show recent advances in generating techniques that are mainly based on long-period fiber gratings,mode-selective couplers,offset-spliced fibers,and tapered fibers.The performances of cylindrical vector beams and vortex beams generated in fibers and fiber lasers are summarized and compared to give a comprehensive understanding of singular beams and to promote their practical applications.展开更多
Optical vortex arrays,with their unique wavefront structures,find extensive applications in fields such as optical communications,trapping,imaging,metrology,and quantum.The methods used to generate these vortex beam a...Optical vortex arrays,with their unique wavefront structures,find extensive applications in fields such as optical communications,trapping,imaging,metrology,and quantum.The methods used to generate these vortex beam arrays are crucial for their applications.In this review,we begin with introducing the fundamental concepts of optical vortex beams.Subsequently,we present three methods for generating them,including diffractive optical elements,metasurfaces,and integrated optical devices.We then explore the applications of optical vortex beam arrays in five different domains.Finally,we conclude with a summary and outlook for the research on optical vortex beam arrays.展开更多
The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably a...The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably affected by atmospheric turbulence(AT)when it propagates through the free-space optical communication environment,which results in detection errors at the receiver.In this paper,we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT,where a diffractive deep neural network(DDNN)is designed and trained to classify the intensity distribution of the input distorted VVBs,and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN.The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks.The energy distribution percentage remains above 95%from weak to medium AT,and the classification accuracy can remain above 95%for various strengths of turbulence.It has a faster convergence and better accuracy than that based on a convolutional neural network.展开更多
We report a method to tune the second harmonic generation(SHG) frequency of a metallic octamer by employing cylindrical vector beams as the excitation. Our method exploits the ability to spatially match the polarizati...We report a method to tune the second harmonic generation(SHG) frequency of a metallic octamer by employing cylindrical vector beams as the excitation. Our method exploits the ability to spatially match the polarization state of excitations with the fundamental target plasmonic modes, enabling flexible control of the SHG resonant frequency.It is found that SHG of the octamer is enhanced over a broad band(400 nm) by changing the excitation from the linearly polarized Gaussian beam to radially and azimuthally polarized beams. More strikingly, when subjected to an azimuthally polarized beam, the SHG intensity of the octamer becomes 30 times stronger than that for the linearly polarized beam even in the presence of Fano resonance.展开更多
In this paper, we demonstrate a scheme to tailor both longitudinal and transverse modes inside a laser cavity and constitute an eye-safe single longitudinal mode Er∶Y_(3)Al_(5)O_(12)(Er:YAG) vector laser. A q-plate i...In this paper, we demonstrate a scheme to tailor both longitudinal and transverse modes inside a laser cavity and constitute an eye-safe single longitudinal mode Er∶Y_(3)Al_(5)O_(12)(Er:YAG) vector laser. A q-plate is employed as a spin-orbital conversion element to modulate the transverse mode and obtain cylindrical vector beams. An optical isolator is employed as a nonreciprocal element for the ring cavity to enforce unidirectional operation and achieve single longitudinal oscillation. The characteristics of power, transverse intensity, and polarization spectrum of the output beams are observed. The observed typical single longitudinal mode and highly matched special polarizations prove the successful tailoring of both longitudinal and transverse modes.展开更多
The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we inve...The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.展开更多
Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating ...Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating VVBs. In this review, we focus on the functions and applications of typical LC devices in recent studies on controlling the space-variant polarized vortex light. Manipulation of VVBs through patterned nematic LC optical elements, patterned cholesteric LC optical elements, self-assembled defects, and LC spatial light modulators is discussed separately. Moreover, LC-based novel optical applications in the field of quantum information are reviewed.展开更多
Noble metallic nanostructures with strong electric near-field enhancement can significantly improve nanoscale light-matter interactions and are critical for high-sensitivity surface-enhanced Raman spectroscopy[SERS].H...Noble metallic nanostructures with strong electric near-field enhancement can significantly improve nanoscale light-matter interactions and are critical for high-sensitivity surface-enhanced Raman spectroscopy[SERS].Here,we use an azimuthal vector beam[AVB]to illuminate the plasmonic tips circular cluster[PTCC]array to enhance the electric near-field intensity of the PTCC array,and then use it to improve SERS sensitivity.The PTCC array was prepared based on the self-assembled and inductive coupled plasmon[ICP]etching methods.The calculation results show that,compared with the linearly polarized beam[LPB]and radial vector beam excitations,the AVB excitation can obtain stronger electric near-field enhancement due to the strong resonant responses formed in the nanogap between adjacent plasmonic tips.Subsequently,our experimental results proved that AVB excitation increased SERS sensitivity to 10-13mol/L,which is two orders of magnitude higher than that of LPB excitation.Meanwhile,the PTCC array had excellent uniformity with the Raman enhancement factor calculated to be~2.4×10^[8].This kind of vector light field enhancing Raman spectroscopy may be applied in the field of sensing technologies,such as the trace amount detection.展开更多
We present a highly efficient method of generating and shaping ellipse perfect vector beams (EPVBs) with a prescribed ellipse intensity profile and continuously variant linear polarization state. The scheme is based o...We present a highly efficient method of generating and shaping ellipse perfect vector beams (EPVBs) with a prescribed ellipse intensity profile and continuously variant linear polarization state. The scheme is based on the coaxial superposition of two orthogonally polarized ellipse laser beams of controllable phase vortex serving as the base vector components. The phase-only computer-generated hologram is specifically designed by means of a modified iteration algorithm involving a complex amplitude constraint, which is able to generate an EPVB with high diffraction efficiency in the vector optical field generator. We experimentally demonstrate that the efficiency of generating the EPVB has a notable improvement from 1.83% in the conventional complex amplitude modulation based technique to 11.1% in our method. We also discuss and demonstrate the simultaneous shaping of multiple EPVBs with independent tunable ellipticity and polarization vortex in both transversal (2D) and axial (3D) focusing structures, proving potentials in a variety of polarization-mediated applications such as trapping and transportation of particles in more complex geometric circumstances.展开更多
We numerically demonstrate that the tight focusing of Bessel beams can generate focal fields with an ultra-long depth of focus(DOF).The ultra-long focal field can be controlled by appropriately regulating the order of...We numerically demonstrate that the tight focusing of Bessel beams can generate focal fields with an ultra-long depth of focus(DOF).The ultra-long focal field can be controlled by appropriately regulating the order of the Bessel function and the polarization.An optical needle and an optical dark channel with nearly 100λDOF are generated.The optical needle has a DOF of~104.9λand a super-diffraction-limited focal spot with the size of 0.19λ^(2).The dark channel has a full-width at halfmaximum of~0.346λand a DOF of~103.8λ.Furthermore,the oscillating focal field with an ultra-long DOF can be also generated by merely changing the order of the input Bessel beam.Our results are expected to contribute to potential applications in optical tweezers,atom guidance and capture,and laser processing.展开更多
The synergy of a plasmonic tip and fiber-based structure light field excitation can provide a powerful tool for Raman examination. Here, we present a method of Raman spectrum enhancement with an Ag-nanoparticles(Ag-NP...The synergy of a plasmonic tip and fiber-based structure light field excitation can provide a powerful tool for Raman examination. Here, we present a method of Raman spectrum enhancement with an Ag-nanoparticles(Ag-NPs)-coated fiber probe internally excited via an azimuthal vector beam(AVB), which is directly generated in a few-mode fiber by using an acoustically induced fiber grating. Theoretical analysis shows that gap mode can be effectively generated on the surface of the Ag-NPs-coated fiber probe excited via an AVB. The experimental result shows that the intensity of Raman signal obtained with analyte molecules of malachite green by exciting the Ag-NPs-coated fiber probe via an AVB is approximately eight times as strong as that via the linear polarization beam(LPB), and the activity of the AVB-excited fiber probe can reach 10^-11 mol∕L, which cannot be achieved by LPB excitation.Moreover, the time stability and reliability are also examined, respectively.展开更多
Vector beams with spiral phase and spatially varying polarization profiles have many applications from optical micromanipulation to materials processing. Here, we propose and demonstrate an atomic spatial mode extract...Vector beams with spiral phase and spatially varying polarization profiles have many applications from optical micromanipulation to materials processing. Here, we propose and demonstrate an atomic spatial mode extracting scheme for the vector beam based on polarization-dependent absorption in the atom vapor. By employing the linear polarization pump beam which induces polarization sensitive absorption in the atomic ensemble, a counter-propagated weak probe vector beam is extracted by spatial absorption, and extracted part still maintains the original polarization and the vortex phase.The topological charges of the extracted mode are verified by interfering with the Gaussian beam, and it can be found that the orbital angular momentum is conserved in the extracting process. Our work will have potential applications in non-destructive spatial mode identification, and is also useful for studying higher-dimensional quantum information based on atomic ensembles.展开更多
基金support provided through the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningalso partially supported by the National Natural Science Foundation of China(91438108 and 61505062)the Chinese Scholarship Council for supporting their study at the University of Dayton through the Joint Training PhD Program and Visiting Scholar Program
文摘Driven by their potential applications, vectorial optical fields with spatially inhomogeneous states of polarization within the cross section have drawn significant attention recently. This work intends to review some of the latest development of this rapidly growing field of optics and offer a general overview of the current status of this field in a few areas. Mathematical descriptions of generalized vectorial optical fields are provided along with several special examples. A time-reversal methodology for the creation of a wide variety of exotic optical focal fields with prescribed characteristics within the focal volume is presented. Recently developed methods for the generation of vectorial optical fields that utilize fiber lasers,digital lasers, vectorial optical field generator, metasurfaces or photoalignment liquid crystals are summarized. The interactions of these vectorial optical fields with various micro-and nano-structures are presented and the prospects of their potential applications are discussed. The connection of vectorial optical fields with higher dimensionality in quantum information is summarized.
基金This work was supported by the National Key R&D Program of China(2017YFA0303800)the National Natural Science Foundation of China(11874300,11634010,61575162,61805277,61675169,91950207)+1 种基金the Fundamental Research Funds for the Central Universities(3102017AX009,3102019PY002,3102019JC008)the Natural Science Basic Research Program of Shaanxi(2018JM6013,2019JQ-447).
文摘Cylindrical vector beams and vortex beams,two types of typical singular optical beams characterized by axially symmetric polarization and helical phase front,possess the unique focusing property and the ability of carrying orbital angular momentum.We discuss the formation mechanisms of such singular beams in few-mode fibers under the vortex basis and show recent advances in generating techniques that are mainly based on long-period fiber gratings,mode-selective couplers,offset-spliced fibers,and tapered fibers.The performances of cylindrical vector beams and vortex beams generated in fibers and fiber lasers are summarized and compared to give a comprehensive understanding of singular beams and to promote their practical applications.
基金financially supported by the National Natural Science Foundation of China(NSFC)(Nos.62125503,62261160388,and 62101198)the Natural Science Foundation of Hubei Province of China(Nos.2021CFB011 and 2023AFA028)+2 种基金the Key R&D Program of Hubei Province of China(Nos.2020BAB001 and 2021BAA024)the Shenzhen Science and Technology Program(No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory(Nos.OVL2021BG004 and OVL2023ZD004)。
文摘Optical vortex arrays,with their unique wavefront structures,find extensive applications in fields such as optical communications,trapping,imaging,metrology,and quantum.The methods used to generate these vortex beam arrays are crucial for their applications.In this review,we begin with introducing the fundamental concepts of optical vortex beams.Subsequently,we present three methods for generating them,including diffractive optical elements,metasurfaces,and integrated optical devices.We then explore the applications of optical vortex beam arrays in five different domains.Finally,we conclude with a summary and outlook for the research on optical vortex beam arrays.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 62001249)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably affected by atmospheric turbulence(AT)when it propagates through the free-space optical communication environment,which results in detection errors at the receiver.In this paper,we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT,where a diffractive deep neural network(DDNN)is designed and trained to classify the intensity distribution of the input distorted VVBs,and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN.The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks.The energy distribution percentage remains above 95%from weak to medium AT,and the classification accuracy can remain above 95%for various strengths of turbulence.It has a faster convergence and better accuracy than that based on a convolutional neural network.
基金National Key R&D Program of China(2017YFA0303800)National Natural Science Foundation of China(NSFC)(11634010,51777168,61377035,61675170,61675171,61701303)+4 种基金Australian Research Council(ARC)(DP140100883)Natural Science Basic Research Plan in Shaanxi Province,China(2017JM6022)Fundamental Research Funds for the Central Universities,China(3102017zy017)Natural Science Foundation of Shanghai,China(17ZR1414300)Shanghai Pujiang Program,China(17PJ1404100)
文摘We report a method to tune the second harmonic generation(SHG) frequency of a metallic octamer by employing cylindrical vector beams as the excitation. Our method exploits the ability to spatially match the polarization state of excitations with the fundamental target plasmonic modes, enabling flexible control of the SHG resonant frequency.It is found that SHG of the octamer is enhanced over a broad band(400 nm) by changing the excitation from the linearly polarized Gaussian beam to radially and azimuthally polarized beams. More strikingly, when subjected to an azimuthally polarized beam, the SHG intensity of the octamer becomes 30 times stronger than that for the linearly polarized beam even in the presence of Fano resonance.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB0405203)National Natural Science Foundation of China(Nos.11834001 and 61905012)National Defense Basic Scientific Research Program of China(No.JCKY2020602C007)。
文摘In this paper, we demonstrate a scheme to tailor both longitudinal and transverse modes inside a laser cavity and constitute an eye-safe single longitudinal mode Er∶Y_(3)Al_(5)O_(12)(Er:YAG) vector laser. A q-plate is employed as a spin-orbital conversion element to modulate the transverse mode and obtain cylindrical vector beams. An optical isolator is employed as a nonreciprocal element for the ring cavity to enforce unidirectional operation and achieve single longitudinal oscillation. The characteristics of power, transverse intensity, and polarization spectrum of the output beams are observed. The observed typical single longitudinal mode and highly matched special polarizations prove the successful tailoring of both longitudinal and transverse modes.
基金Project supported by the Youth Innovation Promotion Association CASState Key Laboratory of Transient Optics and Photonics Open Topics (Grant No. SKLST202222)
文摘The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0303700 and 2019YFA0308700)the National Natural Science Foundation of China(NSFC)(Nos.11874212,11890704,62035008,12004175,and 62175101)the Natural Science Foundation of Jiangsu Province(No.BK20200311)。
文摘Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating VVBs. In this review, we focus on the functions and applications of typical LC devices in recent studies on controlling the space-variant polarized vortex light. Manipulation of VVBs through patterned nematic LC optical elements, patterned cholesteric LC optical elements, self-assembled defects, and LC spatial light modulators is discussed separately. Moreover, LC-based novel optical applications in the field of quantum information are reviewed.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11974282 and 91950207)the Doctoral Dissertation Innovation Fund of Northwestern Polytechnical University(No.CX2021039)。
文摘Noble metallic nanostructures with strong electric near-field enhancement can significantly improve nanoscale light-matter interactions and are critical for high-sensitivity surface-enhanced Raman spectroscopy[SERS].Here,we use an azimuthal vector beam[AVB]to illuminate the plasmonic tips circular cluster[PTCC]array to enhance the electric near-field intensity of the PTCC array,and then use it to improve SERS sensitivity.The PTCC array was prepared based on the self-assembled and inductive coupled plasmon[ICP]etching methods.The calculation results show that,compared with the linearly polarized beam[LPB]and radial vector beam excitations,the AVB excitation can obtain stronger electric near-field enhancement due to the strong resonant responses formed in the nanogap between adjacent plasmonic tips.Subsequently,our experimental results proved that AVB excitation increased SERS sensitivity to 10-13mol/L,which is two orders of magnitude higher than that of LPB excitation.Meanwhile,the PTCC array had excellent uniformity with the Raman enhancement factor calculated to be~2.4×10^[8].This kind of vector light field enhancing Raman spectroscopy may be applied in the field of sensing technologies,such as the trace amount detection.
基金National Key R&D Program of China (2018YFA0306200)National Natural Science Foundation of China (NSFC) (91750202,11474156,61605080,61775097)China Postdoctoral Science Foundation (2016M601775)
文摘We present a highly efficient method of generating and shaping ellipse perfect vector beams (EPVBs) with a prescribed ellipse intensity profile and continuously variant linear polarization state. The scheme is based on the coaxial superposition of two orthogonally polarized ellipse laser beams of controllable phase vortex serving as the base vector components. The phase-only computer-generated hologram is specifically designed by means of a modified iteration algorithm involving a complex amplitude constraint, which is able to generate an EPVB with high diffraction efficiency in the vector optical field generator. We experimentally demonstrate that the efficiency of generating the EPVB has a notable improvement from 1.83% in the conventional complex amplitude modulation based technique to 11.1% in our method. We also discuss and demonstrate the simultaneous shaping of multiple EPVBs with independent tunable ellipticity and polarization vortex in both transversal (2D) and axial (3D) focusing structures, proving potentials in a variety of polarization-mediated applications such as trapping and transportation of particles in more complex geometric circumstances.
基金supported by the National Key Research and Development Program of China(No.2022YFA1404800)National Natural Science Foundation of China(NSFC)(Nos.12074312,11634010,12074313,and 12174309)+1 种基金Fundamental Research Funds for the Central Universities(No.3102019JC008)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2021115)。
文摘We numerically demonstrate that the tight focusing of Bessel beams can generate focal fields with an ultra-long depth of focus(DOF).The ultra-long focal field can be controlled by appropriately regulating the order of the Bessel function and the polarization.An optical needle and an optical dark channel with nearly 100λDOF are generated.The optical needle has a DOF of~104.9λand a super-diffraction-limited focal spot with the size of 0.19λ^(2).The dark channel has a full-width at halfmaximum of~0.346λand a DOF of~103.8λ.Furthermore,the oscillating focal field with an ultra-long DOF can be also generated by merely changing the order of the input Bessel beam.Our results are expected to contribute to potential applications in optical tweezers,atom guidance and capture,and laser processing.
基金National Natural Science Foundation of China(NSFC)(61675169,61675171,11634010)National Key R&D Program of China(2017YFA0303800)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2018JM6036)Shaanxi Provincial Key R&D Program(2018KW-009)
文摘The synergy of a plasmonic tip and fiber-based structure light field excitation can provide a powerful tool for Raman examination. Here, we present a method of Raman spectrum enhancement with an Ag-nanoparticles(Ag-NPs)-coated fiber probe internally excited via an azimuthal vector beam(AVB), which is directly generated in a few-mode fiber by using an acoustically induced fiber grating. Theoretical analysis shows that gap mode can be effectively generated on the surface of the Ag-NPs-coated fiber probe excited via an AVB. The experimental result shows that the intensity of Raman signal obtained with analyte molecules of malachite green by exciting the Ag-NPs-coated fiber probe via an AVB is approximately eight times as strong as that via the linear polarization beam(LPB), and the activity of the AVB-excited fiber probe can reach 10^-11 mol∕L, which cannot be achieved by LPB excitation.Moreover, the time stability and reliability are also examined, respectively.
文摘Vector beams with spiral phase and spatially varying polarization profiles have many applications from optical micromanipulation to materials processing. Here, we propose and demonstrate an atomic spatial mode extracting scheme for the vector beam based on polarization-dependent absorption in the atom vapor. By employing the linear polarization pump beam which induces polarization sensitive absorption in the atomic ensemble, a counter-propagated weak probe vector beam is extracted by spatial absorption, and extracted part still maintains the original polarization and the vortex phase.The topological charges of the extracted mode are verified by interfering with the Gaussian beam, and it can be found that the orbital angular momentum is conserved in the extracting process. Our work will have potential applications in non-destructive spatial mode identification, and is also useful for studying higher-dimensional quantum information based on atomic ensembles.