A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por...A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.展开更多
By means of reasonable assumption and mathematical derivation, a theoretic expression of flow rate for a single fracture with linearly varying width was obtained. The mathematical derivation was based on the cubic law...By means of reasonable assumption and mathematical derivation, a theoretic expression of flow rate for a single fracture with linearly varying width was obtained. The mathematical derivation was based on the cubic law and the new theoretic expression was an extention of traditional parallel plate model. This study may help to analyze seepage in fractured rock mass.展开更多
This paper presents a law of large numbers result,as the size of the population tends to infinity,of SIR stochastic epidemic models,for a population distributed over distinct patches(with migrations between them)and d...This paper presents a law of large numbers result,as the size of the population tends to infinity,of SIR stochastic epidemic models,for a population distributed over distinct patches(with migrations between them)and distinct groups(possibly age groups).The limit is a set of Volterra-type integral equations,and the result shows the effects of both spatial and population heterogeneity.The novelty of the model is that the infectivity of an infected individual is infection age dependent.More precisely,to each infected individual is attached a random infection-age dependent infectivity function,such that the various random functions attached to distinct individuals are i.i.d.The proof involves a novel construction of a sequence of i.i.d.processes to invoke the law of large numbers for processes in,by using the solution of a MacKean-Vlasov type Poisson-driven stochastic equation(as in the propagation of chaos theory).We also establish an identity using the Feynman-Kac formula for an adjoint backward ODE.The advantage of this approach is that it assumes much weaker conditions on the random infectivity functions than our earlier work for the homogeneous model in[20],where standard tightness criteria for convergence of stochastic processes were employed.To illustrate this new approach,we first explain the new proof under the weak assumptions for the homogeneous model,and then describe the multipatch-multigroup model and prove the law of large numbers for that model.展开更多
An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing(LRB)was performed,mainly to study the time-varying laws of rubber materials mechanical propert...An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing(LRB)was performed,mainly to study the time-varying laws of rubber materials mechanical properties.Time-varying laws of the Mooney–Rivlin and Neo-Hookean constitutive parameters of rubber materials under the alternation of aging and seawater erosion were also analyzed.Results indicate that the rubber material mechanical properties were significantly affected by alternation of aging and seawater erosion.Hardness and elongation stress increased exponentially with test time.And 120 days after the test,the hardness increased by 14%,the maximum percentage increase in stress of 124.76%occurred at 100%constant elongation and the minimum percentage increase in stress of 68.32%occurred at 300%constant elongation;Tensile strength and elongation at break decreased by 44.96%and 53.09%.Besides,constitutive parameters of Mooney–Rivlin and Neo-Hookean all changed greatly with test duration.Finally,time-varying laws of constitutive parameters were verified by comparing the simulated and experimental results of the lead rubber bearing’s stiffness.Research results are of great significance to the seismic performance research and life-cycle performance analysis of offshore traffic engineering such as cross-sea bridges and bridges in the marine environment.展开更多
基金Supported by the Original Exploration Project of National Natural Science Foundation of China(5215000105)Young Teachers Fund for Higher Education Institutions of Huo Yingdong Education Foundation(171043)。
文摘A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.
基金supported by the National Basic Research Program of China(2009CB219605)the National Natural Science Foundation of China(41074040)
文摘By means of reasonable assumption and mathematical derivation, a theoretic expression of flow rate for a single fracture with linearly varying width was obtained. The mathematical derivation was based on the cubic law and the new theoretic expression was an extention of traditional parallel plate model. This study may help to analyze seepage in fractured rock mass.
文摘This paper presents a law of large numbers result,as the size of the population tends to infinity,of SIR stochastic epidemic models,for a population distributed over distinct patches(with migrations between them)and distinct groups(possibly age groups).The limit is a set of Volterra-type integral equations,and the result shows the effects of both spatial and population heterogeneity.The novelty of the model is that the infectivity of an infected individual is infection age dependent.More precisely,to each infected individual is attached a random infection-age dependent infectivity function,such that the various random functions attached to distinct individuals are i.i.d.The proof involves a novel construction of a sequence of i.i.d.processes to invoke the law of large numbers for processes in,by using the solution of a MacKean-Vlasov type Poisson-driven stochastic equation(as in the propagation of chaos theory).We also establish an identity using the Feynman-Kac formula for an adjoint backward ODE.The advantage of this approach is that it assumes much weaker conditions on the random infectivity functions than our earlier work for the homogeneous model in[20],where standard tightness criteria for convergence of stochastic processes were employed.To illustrate this new approach,we first explain the new proof under the weak assumptions for the homogeneous model,and then describe the multipatch-multigroup model and prove the law of large numbers for that model.
基金This work was supported by the Programme for National Natural Science Foundation of China(52078150,51878196)National Key R&D Program of China(2019YFE0112500)2019 Guangzhou University Full-Time Graduate“Basic Innovation”Project(2019GDJC-D11).
文摘An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing(LRB)was performed,mainly to study the time-varying laws of rubber materials mechanical properties.Time-varying laws of the Mooney–Rivlin and Neo-Hookean constitutive parameters of rubber materials under the alternation of aging and seawater erosion were also analyzed.Results indicate that the rubber material mechanical properties were significantly affected by alternation of aging and seawater erosion.Hardness and elongation stress increased exponentially with test time.And 120 days after the test,the hardness increased by 14%,the maximum percentage increase in stress of 124.76%occurred at 100%constant elongation and the minimum percentage increase in stress of 68.32%occurred at 300%constant elongation;Tensile strength and elongation at break decreased by 44.96%and 53.09%.Besides,constitutive parameters of Mooney–Rivlin and Neo-Hookean all changed greatly with test duration.Finally,time-varying laws of constitutive parameters were verified by comparing the simulated and experimental results of the lead rubber bearing’s stiffness.Research results are of great significance to the seismic performance research and life-cycle performance analysis of offshore traffic engineering such as cross-sea bridges and bridges in the marine environment.