期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于变尺度融合网络模型的心电数据识别算法 被引量:1
1
作者 刘子龙 陈鹏 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2022年第3期570-578,共9页
心律失常类型的判断是早期心血管疾病预防和诊断的关键,因此心电图(ECG)分析作为医生诊断的重要依据得到了广泛应用。由于受到不同患者间ECG信号形态差异大、类别分布不平衡等因素影响,现有的心律失常自动检测算法在识别过程中存在一定... 心律失常类型的判断是早期心血管疾病预防和诊断的关键,因此心电图(ECG)分析作为医生诊断的重要依据得到了广泛应用。由于受到不同患者间ECG信号形态差异大、类别分布不平衡等因素影响,现有的心律失常自动检测算法在识别过程中存在一定的困难。本文提出了一种变尺度融合网络模型用于心律类型的自动识别,利用改进后的ECG生成网络(EGAN)模块解决了ECG数据不平衡问题,并以灰度递归图(GRP)和频谱图形式对ECG信号进行二维重现,结合模型的分支结构,实现了变长心拍的自动分类。研究结果采用麻省理工学院与贝斯以色列医院(MIT-BIH)心律失常数据库进行验证,对其中八种心律类型进行区分,平均准确率达到了99.36%,敏感性和特异性分别为96.11%、99.84%,未来期望本方法可用于临床辅助诊断以及智能穿戴设备等。 展开更多
关键词 心律失常 变尺度融合网络 心电生成网络 心电数据不平衡
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部