The piezoelectric pump with nozzle/diffuser-elements, which oscillating formdiffering from regular volumetric reciprocating or rotating pumps because there arenozzle/diffuser-elements substituted for regular valves, i...The piezoelectric pump with nozzle/diffuser-elements, which oscillating formdiffering from regular volumetric reciprocating or rotating pumps because there arenozzle/diffuser-elements substituted for regular valves, is a new type pump whose actuator is apiezoelectric ceramal part with verse piezoelectric effect In recent year, piezoelectric pump ispaid increasing attention to because it is an ideal candidate in application in such area as medicalhealth, mechanical tools and micro-mechanism. The fundamental research on it, however, is still notmade through. Focuses on the phenomenon of different directions of flow among Germany pump, Chinesepump and Swiss pump, which are all fitted with nozzle/diffuser-elements, and analyzes the coneangle of nozzle/diffuser-elements based on the flow equation of valve-less piezoelectric pump withnozzle/diffuser-elements. As a result, the concepts of diffuser toss coefficient and losscoefficient are introduced to explain these phenomena, from which a discussion is given on theoptimization of the cone angle of nozzle/diffuser-element aiming at the maximum of pump flow.展开更多
Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of v...Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of valve's characteristic on ICP's total performance will found the base for its optimum design. Based on the theoretical and testing fruits of single cylinder prototype, the performance of the valves and complete appliance of the latest is simulated. When the natural frequency of valves is approximately to the round number times of the working frequency, volumetric efficiency is seriously low. The nominal rotational speed of the prototype is nearly to the speed where the volumetric efficiency is lowest, which is harmful to the normal work of ICP, so further structure optimization of valves should be carried out. The change of volumetric efficiency has great influence on the fuel consumption rate, output flow, effective thermal efficiency, effective power, and so on, but little on output pressure.展开更多
A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plat...A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plate, is modelled by Finite Element Method (FEM) in ANSYS and its performance is simulated and analyzed. The pump gives the best performance when the driving signals of the inlet and outlet valves have a bigger duty cycle and the plate has a higher voltage applied.展开更多
Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump ch...Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump channel and chamber bottom. Furthermore, position fixed valves with respect to the inlet and outlet also makes the adjustability and controllability of flow rate worse. In order to overcome these shortcomings, this paper puts forward a novel implantable structure of valve-less piezoelectric pump with hemisphere-segments in the pump chamber. Based on the theory of flow around bluff-body, the flow resistance on the spherical and round surface of hemisphere-segment is different when fluid flows through, and the macroscopic flow resistance differences thus formed are also different. A novel valve-less piezoelectric pump with hemisphere-segment bluff-body (HSBB) is presented and designed. HSBB is the no-moving part valve. By the method of volume and momentum comparison, the stress on the bluff-body in the pump chamber is analyzed. The essential reason of unidirectional fluid pumping is expounded, and the flow rate formula is obtained. To verify the theory, a prototype is produced. By using the prototype, experimental research on the relationship between flow rate, pressure difference, voltage, and frequency has been carried out, which proves the correctness of the above theory. This prototype has six hemisphere-segments in the chamber filled with water, and the effective diameter of the piezoelectric bimorph is 30mm. The experiment result shows that the flow rate can reach 0.50 mL/s at the frequency of 6 Hz and the voltage of 110 V. Besides, the pressure difference can reach 26.2 mm H20 at the frequency of 6 Hz and the voltage of 160 V. This research proposes a valve-less piezoelectric pump with hemisphere-segment bluff-body, and its validity and feasibility is verified through theoretical analysis and experiment.展开更多
基金This project is supported by Municipal Natural Science Foundation of Beiiing , China (No.3032005).
文摘The piezoelectric pump with nozzle/diffuser-elements, which oscillating formdiffering from regular volumetric reciprocating or rotating pumps because there arenozzle/diffuser-elements substituted for regular valves, is a new type pump whose actuator is apiezoelectric ceramal part with verse piezoelectric effect In recent year, piezoelectric pump ispaid increasing attention to because it is an ideal candidate in application in such area as medicalhealth, mechanical tools and micro-mechanism. The fundamental research on it, however, is still notmade through. Focuses on the phenomenon of different directions of flow among Germany pump, Chinesepump and Swiss pump, which are all fitted with nozzle/diffuser-elements, and analyzes the coneangle of nozzle/diffuser-elements based on the flow equation of valve-less piezoelectric pump withnozzle/diffuser-elements. As a result, the concepts of diffuser toss coefficient and losscoefficient are introduced to explain these phenomena, from which a discussion is given on theoptimization of the cone angle of nozzle/diffuser-element aiming at the maximum of pump flow.
基金supported by National Natural Science Foundation of China (Grant No. 50575107)
文摘Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of valve's characteristic on ICP's total performance will found the base for its optimum design. Based on the theoretical and testing fruits of single cylinder prototype, the performance of the valves and complete appliance of the latest is simulated. When the natural frequency of valves is approximately to the round number times of the working frequency, volumetric efficiency is seriously low. The nominal rotational speed of the prototype is nearly to the speed where the volumetric efficiency is lowest, which is harmful to the normal work of ICP, so further structure optimization of valves should be carried out. The change of volumetric efficiency has great influence on the fuel consumption rate, output flow, effective thermal efficiency, effective power, and so on, but little on output pressure.
基金the National Science Foundation of China(No.50575093 and No.50775093)for the financial support.
文摘A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plate, is modelled by Finite Element Method (FEM) in ANSYS and its performance is simulated and analyzed. The pump gives the best performance when the driving signals of the inlet and outlet valves have a bigger duty cycle and the plate has a higher voltage applied.
基金Supported by National Natural Science Foundation of China(Grant No.51375227)Major Research Plan of National Natural Science Foundation of China(Grant No.91223201)Independent Projects Fund of State Key Lab of Mechanics and Control of Mechanical Structures of China(Grant No.0313G01)
文摘Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump channel and chamber bottom. Furthermore, position fixed valves with respect to the inlet and outlet also makes the adjustability and controllability of flow rate worse. In order to overcome these shortcomings, this paper puts forward a novel implantable structure of valve-less piezoelectric pump with hemisphere-segments in the pump chamber. Based on the theory of flow around bluff-body, the flow resistance on the spherical and round surface of hemisphere-segment is different when fluid flows through, and the macroscopic flow resistance differences thus formed are also different. A novel valve-less piezoelectric pump with hemisphere-segment bluff-body (HSBB) is presented and designed. HSBB is the no-moving part valve. By the method of volume and momentum comparison, the stress on the bluff-body in the pump chamber is analyzed. The essential reason of unidirectional fluid pumping is expounded, and the flow rate formula is obtained. To verify the theory, a prototype is produced. By using the prototype, experimental research on the relationship between flow rate, pressure difference, voltage, and frequency has been carried out, which proves the correctness of the above theory. This prototype has six hemisphere-segments in the chamber filled with water, and the effective diameter of the piezoelectric bimorph is 30mm. The experiment result shows that the flow rate can reach 0.50 mL/s at the frequency of 6 Hz and the voltage of 110 V. Besides, the pressure difference can reach 26.2 mm H20 at the frequency of 6 Hz and the voltage of 160 V. This research proposes a valve-less piezoelectric pump with hemisphere-segment bluff-body, and its validity and feasibility is verified through theoretical analysis and experiment.