With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology,it is anticipated that increasing numbers of therapeutic genes or targets will become ava...With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology,it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies.Despite numerous setbacks,efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases.It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies.There has been a long-lasting interest in using viral vectors,especially adenoviral vectors,to deliver therapeutic genes for the past two decades.Among all currently available viral vectors,adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types.The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development.In fact,among over 2000 gene therapy clinical trials approved worldwide since 1989,a significant portion of the trials have utilized adenoviral vectors.This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors,including adenoviral biology,approaches to engineering adenoviral vectors,and their applications in clinical and preclinical studies with an emphasis in the areas of cancer treatment,vaccination and regenerative medicine.Current challenges and future directions regarding the use of adenoviral vectors are also discussed.It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.展开更多
2019年12月发生的新型冠状病毒肺炎(Coronavirus disease 2019,COVID-19)对全球公共卫生造成巨大危机。世界卫生组织(World Health Organization,WHO)在2020年3月11日宣布COVID-19为全球大流行。目前,新型冠状病毒疫苗研发的技术路线主...2019年12月发生的新型冠状病毒肺炎(Coronavirus disease 2019,COVID-19)对全球公共卫生造成巨大危机。世界卫生组织(World Health Organization,WHO)在2020年3月11日宣布COVID-19为全球大流行。目前,新型冠状病毒疫苗研发的技术路线主要有灭活疫苗、重组蛋白疫苗、病毒载体疫苗、核酸疫苗和减毒活疫苗,此外,还有运用反向疫苗学和疫苗组学等新兴概念进行疫苗的设计。本文对目前正在研发和临床试验的各类新型冠状病毒疫苗以及研发所面临的挑战作一综述。展开更多
基金Research in the authors’laboratories was supported in part by research grants from the National Institutes of Health(AT004418,DE020140 to TCH and RRR)the US Department of Defense(OR130096 to JMW)+3 种基金the Scoliosis Research Society(TCH and MJL)the 973 Program of the Ministry of Science and Technology(MOST)of China(#2011CB707906 to TCH)The reported work was also supported in part by The University of Chicago Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430.
文摘With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology,it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies.Despite numerous setbacks,efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases.It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies.There has been a long-lasting interest in using viral vectors,especially adenoviral vectors,to deliver therapeutic genes for the past two decades.Among all currently available viral vectors,adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types.The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development.In fact,among over 2000 gene therapy clinical trials approved worldwide since 1989,a significant portion of the trials have utilized adenoviral vectors.This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors,including adenoviral biology,approaches to engineering adenoviral vectors,and their applications in clinical and preclinical studies with an emphasis in the areas of cancer treatment,vaccination and regenerative medicine.Current challenges and future directions regarding the use of adenoviral vectors are also discussed.It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.
文摘2019年12月发生的新型冠状病毒肺炎(Coronavirus disease 2019,COVID-19)对全球公共卫生造成巨大危机。世界卫生组织(World Health Organization,WHO)在2020年3月11日宣布COVID-19为全球大流行。目前,新型冠状病毒疫苗研发的技术路线主要有灭活疫苗、重组蛋白疫苗、病毒载体疫苗、核酸疫苗和减毒活疫苗,此外,还有运用反向疫苗学和疫苗组学等新兴概念进行疫苗的设计。本文对目前正在研发和临床试验的各类新型冠状病毒疫苗以及研发所面临的挑战作一综述。