For the boundary between transversely isotropic media with a vertical axis of symmetry (VTI media), the interface between a liquid and a VTI medium, and the free-surface of an elastic half-space of a VTI medium, an ac...For the boundary between transversely isotropic media with a vertical axis of symmetry (VTI media), the interface between a liquid and a VTI medium, and the free-surface of an elastic half-space of a VTI medium, an accurately fast algorithm was presented for calculating reflection/transmission (R/T) coefficients. Specially, the case of post-critical angle incidence was considered. Although we only performed the numerical calculation for the models of the VTI media, the calculated results can be extended to the models of transversely isotropic media with a horizontal axis of rotation symmetry (HTI media). Compared to previous work, this algorithm can be used not only for the calculation of R/T coefficients of the boundary between ellipsoidally anisotropic media, but also for that between generally anisotropic media, and the speed and accuracy of this algorithm are faster and higher. According to the anisotropic parameters of some rocks given by the published literature, we performed the calculation of R/T coefficients by using this algorithm and analyzed the effect of the rock anisotropy on R/T coefficients. We used Snell's law and the energy balance principle to perform verification for the calculated results.展开更多
【目的】随着深部资源勘探开发的重要性不断提高,对高精度地震勘探提出了新要求。针对具有强各向异性的含煤地层,传统基于各向同性的资料处理方法不再适用。【方法】提出一种基于水平横向各向同性介质(Transverse Isotropy Medium with ...【目的】随着深部资源勘探开发的重要性不断提高,对高精度地震勘探提出了新要求。针对具有强各向异性的含煤地层,传统基于各向同性的资料处理方法不再适用。【方法】提出一种基于水平横向各向同性介质(Transverse Isotropy Medium with Vertical Symmetry Axis,VTI)和方位各向异性介质(Transverse Isotropy with Horizontal Axis of Symmetry,HTI)联合处理的地震数据处理方法。首先,针对含煤地层沉积特征,分析VTI介质特点,采用高阶动校正处理,可以有效消除各向异性在大偏移距数据中引起的同相轴弯曲,保证共反射点远近道能达到同相,提高数据叠加成像质量。其次,针对构造裂隙发育特征,立足于HTI介质的方位各向异性分析,采用OVT域处理方法,通过建立方位各向异性参数场去除不同方位角差异对数据的影响。联合应用上述2种处理方法,通过制定合理的处理流程,优选关键参数,搭建一套实用的、适合目标地层的各向异性处理校正方法,解决含煤地层在复杂条件下的速度分析、叠加等问题,从而提高煤系地震数据的分辨率和解释精度。【结果和结论】实际应用结果表明,新方法获得的地震数据主频更高、频带更宽,在小构造特征识别和古地理环境刻画方面更具优势,为精细地质解释提供了有力支撑。同时也强调了对含煤地层进行各向异性处理的必要性,推动各向异性处理技术的在宽方位地震勘探中的应用。展开更多
In real strata anisotropy and viscosity extensively exists. They degraded waveforms in amplitude, resulting in which reducing of image resolution. To obtain high-precision imaging of deep reservoirs, we extended the s...In real strata anisotropy and viscosity extensively exists. They degraded waveforms in amplitude, resulting in which reducing of image resolution. To obtain high-precision imaging of deep reservoirs, we extended the separated viscous and anisotropic reverse time migration (RTM) to a stable viscoacoustic anisotropic RTM for vertical transverse isotropic (VTI) media, based on single generalized standard and linear solid (GSLS) media theory.. We used a pseudo-spectral method to develop the numerical simulation. By introducing a regularization operator to eliminate the high-frequency instability problem, we built a stable inverse propagator and achieved viscoacoustic VTI media RTM. High-resolution imaging results were obtained after correcting for the effects of anisotropy and viscosity. Synthetic tests verify the validity and accuracy of algorithm.展开更多
基金the Natural Science Foundation of Shaanxi Province, China (Grant No. 2007D15)
文摘For the boundary between transversely isotropic media with a vertical axis of symmetry (VTI media), the interface between a liquid and a VTI medium, and the free-surface of an elastic half-space of a VTI medium, an accurately fast algorithm was presented for calculating reflection/transmission (R/T) coefficients. Specially, the case of post-critical angle incidence was considered. Although we only performed the numerical calculation for the models of the VTI media, the calculated results can be extended to the models of transversely isotropic media with a horizontal axis of rotation symmetry (HTI media). Compared to previous work, this algorithm can be used not only for the calculation of R/T coefficients of the boundary between ellipsoidally anisotropic media, but also for that between generally anisotropic media, and the speed and accuracy of this algorithm are faster and higher. According to the anisotropic parameters of some rocks given by the published literature, we performed the calculation of R/T coefficients by using this algorithm and analyzed the effect of the rock anisotropy on R/T coefficients. We used Snell's law and the energy balance principle to perform verification for the calculated results.
文摘【目的】随着深部资源勘探开发的重要性不断提高,对高精度地震勘探提出了新要求。针对具有强各向异性的含煤地层,传统基于各向同性的资料处理方法不再适用。【方法】提出一种基于水平横向各向同性介质(Transverse Isotropy Medium with Vertical Symmetry Axis,VTI)和方位各向异性介质(Transverse Isotropy with Horizontal Axis of Symmetry,HTI)联合处理的地震数据处理方法。首先,针对含煤地层沉积特征,分析VTI介质特点,采用高阶动校正处理,可以有效消除各向异性在大偏移距数据中引起的同相轴弯曲,保证共反射点远近道能达到同相,提高数据叠加成像质量。其次,针对构造裂隙发育特征,立足于HTI介质的方位各向异性分析,采用OVT域处理方法,通过建立方位各向异性参数场去除不同方位角差异对数据的影响。联合应用上述2种处理方法,通过制定合理的处理流程,优选关键参数,搭建一套实用的、适合目标地层的各向异性处理校正方法,解决含煤地层在复杂条件下的速度分析、叠加等问题,从而提高煤系地震数据的分辨率和解释精度。【结果和结论】实际应用结果表明,新方法获得的地震数据主频更高、频带更宽,在小构造特征识别和古地理环境刻画方面更具优势,为精细地质解释提供了有力支撑。同时也强调了对含煤地层进行各向异性处理的必要性,推动各向异性处理技术的在宽方位地震勘探中的应用。
基金Research is sponsored by the National Natural Science Fund(No.41274117)the National Natural Science Fund(No.41574098)Sinopec Geophysical Key Laboratory Open Fund(No.wtyjy-wx2016-04-2)
文摘In real strata anisotropy and viscosity extensively exists. They degraded waveforms in amplitude, resulting in which reducing of image resolution. To obtain high-precision imaging of deep reservoirs, we extended the separated viscous and anisotropic reverse time migration (RTM) to a stable viscoacoustic anisotropic RTM for vertical transverse isotropic (VTI) media, based on single generalized standard and linear solid (GSLS) media theory.. We used a pseudo-spectral method to develop the numerical simulation. By introducing a regularization operator to eliminate the high-frequency instability problem, we built a stable inverse propagator and achieved viscoacoustic VTI media RTM. High-resolution imaging results were obtained after correcting for the effects of anisotropy and viscosity. Synthetic tests verify the validity and accuracy of algorithm.