期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5s室内目标检测轻量化改进算法研究 被引量:4
1
作者 牛鑫宇 毛鹏军 +1 位作者 段云涛 娄晓恒 《计算机工程与应用》 CSCD 北大核心 2024年第3期109-118,共10页
针对现有室内目标检测算法,存在结构复杂,计算量以及模型参数量过大等问题,难以部署到计算能力有限的室内机器人平台,实现高效的目标检测。为解决这一问题,提出了一种改进的YOLOV5s轻量化检测算法。该方法采用ShuffleNetv2作为主干特征... 针对现有室内目标检测算法,存在结构复杂,计算量以及模型参数量过大等问题,难以部署到计算能力有限的室内机器人平台,实现高效的目标检测。为解决这一问题,提出了一种改进的YOLOV5s轻量化检测算法。该方法采用ShuffleNetv2作为主干特征提取网络,并且在改进的主干网络基础上采用CA注意力机制,同时在颈部网络中采用GSConv和VOV-GSCSP模块。最后引入边框回归损失函数EIOU加快网络收敛。研究结果表明,改进后的目标检测算法,模型计算量减少了68.75%,模型参数量减少了62.2%,权重文件减少了59.7%,平均精确率mAP均值为0.653,改进后的目标检测模型能够在保证轻量化的同时保证检测精度。 展开更多
关键词 YOLOv5s 轻量化 ShuffleNetv2网络 CA注意力机制 GSConv模块 vov-gscsp模块 EIOU损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部