The Kumamoto area of Kyusyu Island was attacked by a series of large earthquakes (EQs) in April, 2016. The first two foreshocks had the magnitudes of 6.5 and 6.4, and about 1 day later there was the main shock on 15 A...The Kumamoto area of Kyusyu Island was attacked by a series of large earthquakes (EQs) in April, 2016. The first two foreshocks had the magnitudes of 6.5 and 6.4, and about 1 day later there was the main shock on 15 April (UT) with magnitude 7.3. These are fault-type EQs, and so we would expect a variety of electromagnetic precursors to these EQs because we had detected different phenomena for the 1995 Kobe EQ, same fault-type EQ. As for the lithospheric effect, the ULF data at Kanoya observatory (about 150 km from the EQ epicenters) are used, but the simple statistical analysis could not provide us with any clear evidence of ULF radiation from the lithosphere. However, our conventional analyses indicated clear signatures in the atmosphere as ULF/ELF impulsive emissions and also in the ionosphere as observed by means of VLF propagation anomalies and ULF depression. ULF/ELF radiation appeared on 8-11 April (in UT) (maximum on 10 and 11 April (UT)), while ULF depression took place on 8 and 10 April (in UT), so that both atmospheric radiation and ionospheric perturbation took place nearly during the same time period.展开更多
There have been published many papers on VLF (very low frequency) characteristics to study seismo-ionospheric perturbations. Usually VLF records (amplitude and/or phase) are used to investigate mainly the temporal evo...There have been published many papers on VLF (very low frequency) characteristics to study seismo-ionospheric perturbations. Usually VLF records (amplitude and/or phase) are used to investigate mainly the temporal evolution of VLF propagation anomalies with special attention to one particular propagation path. The most important advantage of this paper is the simultaneous use of several propagation paths. A succession of earthquakes (EQs) happened in the Kumamoto area in Kyusyu Island;two strong foreshocks with magnitude of 6.5 and 6.4 on 14 April (UT) and the main shock with magnitude 7.3 on 15 April (UT). Because the EQ epicenters are not far from the VLF transmitter (with the call sign of JJI in Miyazaki prefecture), we can utilize simultaneously 8 observing stations of our network all over Japan. Together with the use of theoretical computations based on wave-hop theory, we try to trace both the temporal and spatial evolutions of the ionospheric perturbation associated with this succession of EQs. It is found that the ionospheric perturbation begins to appear about two weeks before the EQs, and this perturbation becomes most developed 5 - 3 days before the main shock. When the perturbation is most disturbed, the maximum change in vertical direction is depletion in the VLF effective ionospheric height of the order of 10 km, and its horizontal scale (or its radius) is about 1000 km. These spatio-temporal changes of the seismo-ionospheric perturbation will be investigated in details in the discus-sion, a comparison has made with the VLF characteristics of the 1995 Kobe with the same magnitude and of the same fault-type, and a brief discussion on the generation mechanism of seismo-ionospheric perturbation is finally made.展开更多
文摘The Kumamoto area of Kyusyu Island was attacked by a series of large earthquakes (EQs) in April, 2016. The first two foreshocks had the magnitudes of 6.5 and 6.4, and about 1 day later there was the main shock on 15 April (UT) with magnitude 7.3. These are fault-type EQs, and so we would expect a variety of electromagnetic precursors to these EQs because we had detected different phenomena for the 1995 Kobe EQ, same fault-type EQ. As for the lithospheric effect, the ULF data at Kanoya observatory (about 150 km from the EQ epicenters) are used, but the simple statistical analysis could not provide us with any clear evidence of ULF radiation from the lithosphere. However, our conventional analyses indicated clear signatures in the atmosphere as ULF/ELF impulsive emissions and also in the ionosphere as observed by means of VLF propagation anomalies and ULF depression. ULF/ELF radiation appeared on 8-11 April (in UT) (maximum on 10 and 11 April (UT)), while ULF depression took place on 8 and 10 April (in UT), so that both atmospheric radiation and ionospheric perturbation took place nearly during the same time period.
文摘There have been published many papers on VLF (very low frequency) characteristics to study seismo-ionospheric perturbations. Usually VLF records (amplitude and/or phase) are used to investigate mainly the temporal evolution of VLF propagation anomalies with special attention to one particular propagation path. The most important advantage of this paper is the simultaneous use of several propagation paths. A succession of earthquakes (EQs) happened in the Kumamoto area in Kyusyu Island;two strong foreshocks with magnitude of 6.5 and 6.4 on 14 April (UT) and the main shock with magnitude 7.3 on 15 April (UT). Because the EQ epicenters are not far from the VLF transmitter (with the call sign of JJI in Miyazaki prefecture), we can utilize simultaneously 8 observing stations of our network all over Japan. Together with the use of theoretical computations based on wave-hop theory, we try to trace both the temporal and spatial evolutions of the ionospheric perturbation associated with this succession of EQs. It is found that the ionospheric perturbation begins to appear about two weeks before the EQs, and this perturbation becomes most developed 5 - 3 days before the main shock. When the perturbation is most disturbed, the maximum change in vertical direction is depletion in the VLF effective ionospheric height of the order of 10 km, and its horizontal scale (or its radius) is about 1000 km. These spatio-temporal changes of the seismo-ionospheric perturbation will be investigated in details in the discus-sion, a comparison has made with the VLF characteristics of the 1995 Kobe with the same magnitude and of the same fault-type, and a brief discussion on the generation mechanism of seismo-ionospheric perturbation is finally made.