Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with aberrant T-cell developmental arrest. Individuals with relapsed T-ALL have limited therapeutic alternatives and po...Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with aberrant T-cell developmental arrest. Individuals with relapsed T-ALL have limited therapeutic alternatives and poor prognosis. The mitochondrial function is critical for the T-cell viability. The voltage-dependent anion channel 2 (VDAC2) in the mitochondrial outer membrane, interacts with pro-apoptotic BCL-2 proteins and mediates the apoptosis of several cancer cell lines. Objective: The aim of the current study is to explore the role of VDAC2 in T-ALL cell survival and proliferation. Methods: Publicly available datasets of RNA-seq results were analyzed for expression of VDAC isoforms and T-ALL cell lines were treated with a VDAC2 small molecular inhibitor erastin. A VDAC2 RNA interference (siRNA) was delivered to T-ALL cell lines using a retroviral vector. Functional assays were performed to investigate the VDAC2 siRNA impacts on cell proliferation, apoptosis and survival of T-ALL cells. Results: Our analysis found a high expression of VDAC2 mRNA in various T-ALL cell lines. Public datasets of T-ALL RNA-seq also showed that VDAC2 is highly expressed in T-ALL (116.2 ± 36.7), compared to control groups. Only two T-ALL cell lines showed sensitivity to erastin (20 μM) after 48 hours of incubation, including Jurkat (IC<sub>50</sub> = 3.943 μM) and Molt4 (IC<sub>50</sub> = 3.286 μM), while another two T-ALL cells (CUTLL1 and RPMI 8402) had unstable IC<sub>50</sub>. However, five T-ALL cell lines (LOUCY, CCRF-CEM, P12-ICHI, HPB-ALL, and PEER cells) showed resistance to erastin. On the contrary, all T-ALL cell lines genetically inhibited with VDAC2 siRNA led to more than 80% decrease in VDAC2 mRNA levels, and a Conclusion: VDAC2 is highly expressed in T-ALL cells. The inhibition of VDAC2 significantly decreased cell viability, increased apoptosis, reduced cell proliferation and caused cell cycle sub-G1 arrest of T-ALL cells.展开更多
Hepatocellular carcinoma(HCC)is one of most common and deadliest malignancies.Celastrol(Cel),a natural product derived from the Tripterygium wilfordii plant,has been extensively researched for its potential effectiven...Hepatocellular carcinoma(HCC)is one of most common and deadliest malignancies.Celastrol(Cel),a natural product derived from the Tripterygium wilfordii plant,has been extensively researched for its potential effectiveness in fighting cancer.However,its clinical application has been hindered by the unclear mechanism of action.Here,we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and antitumor capacity by developing a Cel-based liposomes in HCC.We demonstrated that Cel selectively targets the voltage-dependent anion channel 2(VDAC2).Cel directly binds to the cysteine residues of VDAC2,and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore(mPTP)function.We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells.Moreover,coencapsulation of Cel into alkyl glucoside-modified liposomes(AGCL)improved its antitumor efficacy and minimized its side effects.AGCL has been shown to effectively suppress the proliferation of tumor cells.In a xenograft nude mice experiment,AGCL significantly inhibited tumor growth and promoted apoptosis.Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death,while the Cel liposomes enhance its targetability and reduces side effects.Overall,Cel shows promise as a therapeutic agent for HCC.展开更多
文摘Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with aberrant T-cell developmental arrest. Individuals with relapsed T-ALL have limited therapeutic alternatives and poor prognosis. The mitochondrial function is critical for the T-cell viability. The voltage-dependent anion channel 2 (VDAC2) in the mitochondrial outer membrane, interacts with pro-apoptotic BCL-2 proteins and mediates the apoptosis of several cancer cell lines. Objective: The aim of the current study is to explore the role of VDAC2 in T-ALL cell survival and proliferation. Methods: Publicly available datasets of RNA-seq results were analyzed for expression of VDAC isoforms and T-ALL cell lines were treated with a VDAC2 small molecular inhibitor erastin. A VDAC2 RNA interference (siRNA) was delivered to T-ALL cell lines using a retroviral vector. Functional assays were performed to investigate the VDAC2 siRNA impacts on cell proliferation, apoptosis and survival of T-ALL cells. Results: Our analysis found a high expression of VDAC2 mRNA in various T-ALL cell lines. Public datasets of T-ALL RNA-seq also showed that VDAC2 is highly expressed in T-ALL (116.2 ± 36.7), compared to control groups. Only two T-ALL cell lines showed sensitivity to erastin (20 μM) after 48 hours of incubation, including Jurkat (IC<sub>50</sub> = 3.943 μM) and Molt4 (IC<sub>50</sub> = 3.286 μM), while another two T-ALL cells (CUTLL1 and RPMI 8402) had unstable IC<sub>50</sub>. However, five T-ALL cell lines (LOUCY, CCRF-CEM, P12-ICHI, HPB-ALL, and PEER cells) showed resistance to erastin. On the contrary, all T-ALL cell lines genetically inhibited with VDAC2 siRNA led to more than 80% decrease in VDAC2 mRNA levels, and a Conclusion: VDAC2 is highly expressed in T-ALL cells. The inhibition of VDAC2 significantly decreased cell viability, increased apoptosis, reduced cell proliferation and caused cell cycle sub-G1 arrest of T-ALL cells.
基金support from the National Natural Science Foundation of China(Grants No.82304827,82074098,81841001)the Fundamental Research Funds for the Central public welfare research institutes(ZZ13-ZD-07),the National Key Research and Development Programof China(2020YFA0908000,2022YFC2303600)+7 种基金the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No:ZYYCXTD-C-202002)The Shenzhen Medical Research Fund of Shenzhen Medical Academy of Research and Translation(B2302051)the Fundamental Research Funds for the Central Public Welfare Research Institutes(Grants No.ZZ13-YQ-108)the Shenzhen Science and Technology Innovation Commission(Grants No.JCYJ20210324115800001)the Science and Technology Foundation of Shenzhen(Shenzhen Clinical Medical Research Center for Geriatric Diseases),the Distinguished Expert Project of Sichuan Province Tianfu Scholar(CW202002)Supported by Shenzhen Governmental Sustainable Development Fund(KCXFZ20201221173612034)Supported by Shenzhen key Laboratory of Kidney Diseases(ZDSYS201504301616234)Supported by Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(NO.SZGSP001).
文摘Hepatocellular carcinoma(HCC)is one of most common and deadliest malignancies.Celastrol(Cel),a natural product derived from the Tripterygium wilfordii plant,has been extensively researched for its potential effectiveness in fighting cancer.However,its clinical application has been hindered by the unclear mechanism of action.Here,we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and antitumor capacity by developing a Cel-based liposomes in HCC.We demonstrated that Cel selectively targets the voltage-dependent anion channel 2(VDAC2).Cel directly binds to the cysteine residues of VDAC2,and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore(mPTP)function.We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells.Moreover,coencapsulation of Cel into alkyl glucoside-modified liposomes(AGCL)improved its antitumor efficacy and minimized its side effects.AGCL has been shown to effectively suppress the proliferation of tumor cells.In a xenograft nude mice experiment,AGCL significantly inhibited tumor growth and promoted apoptosis.Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death,while the Cel liposomes enhance its targetability and reduces side effects.Overall,Cel shows promise as a therapeutic agent for HCC.