Molecular virology methods including polymerase chain reaction, cloning and sequencing have revolutionised our understanding of viral genome variation. In the case of hepatitis B virus (HBV), sequencing studies have i...Molecular virology methods including polymerase chain reaction, cloning and sequencing have revolutionised our understanding of viral genome variation. In the case of hepatitis B virus (HBV), sequencing studies have identified a number of virus variants normally found during the natural course of chronic infection. The appearance of the precore stop codon (with G-for-A substitution at position 1896) and basal core promoter (BCP) (with A-for-T and G-for-A, at positions 1762 and 1764, respectively) variants which reduce or abrogate hepatitis B e antigen (HBeAg) production, heralds the initiation of the seroconversion phase from HBeAg to anti-HBe positivity. The gradual removal of the tolerogenic effect of HBeAg leads to the awakening of the immune response (immune clearance phase). Most patients after HBeAg seroconversion become “inactive HBsAg carriers”. However during the course of infection precore and/or BCP variants may emerge and be selected leading to HBeAg negative chronic hepatitis B (CHB) with high viremia levels (reactivation phase). The prevalence of HBeAg negative CHB has been increasing over the last few decades and has become the commonest type of HBV infection in many countries of the world. This probably reflects the aging of existing HBV carriers and the effective prevention measures restricting new HBV infections. Frequent acute exacerbations accompanied by high viral replication, elevated alanine aminotransferase levels and histological activity are a common feature of HBeAg negative CHB leading to cirrhosis much faster than in HBeAg positive CHB patients.展开更多
Bioinformatics methods for various RNA-seq data analyses are in fast evolution with the improvement of sequencing technologies. However, many challenges still exist in how to efficiently process the RNA-seq data to ob...Bioinformatics methods for various RNA-seq data analyses are in fast evolution with the improvement of sequencing technologies. However, many challenges still exist in how to efficiently process the RNA-seq data to obtain accurate and comprehensive results. Here we reviewed the strategies for improving diverse transcriptomic studies and the annotation of genetic variants based on RNA-seq data. Mapping RNA-seq reads to the genome and transcriptome represent two distinct methods for quantifying the expression of genes/transcripts. Besides the known genes annotated in current databases, many novel genes/transcripts(especially those long noncoding RNAs) still can be identified on the reference genome using RNA-seq. Moreover, owing to the incompleteness of current reference genomes, some novel genes are missing from them. Genome-guided and de novo transcriptome reconstruction are two effective and complementary strategies for identifying those novel genes/transcripts on or beyond the reference genome. In addition, integrating the genes of distinct databases to conduct transcriptomics and genetics studies can improve the results of corresponding analyses.展开更多
Diabetic nephropathy accounts for the most serious microvascular complication of diabetes mellitus. It is suggested that the prevalence of diabetic nephropathy will continue to increase in future posing a major challe...Diabetic nephropathy accounts for the most serious microvascular complication of diabetes mellitus. It is suggested that the prevalence of diabetic nephropathy will continue to increase in future posing a major challenge to the healthcare system resulting in increased morbidity and mortality. It occurs as a result of interaction between both genetic and environmental factors in individuals with both type 1 and type 2 diabetes. Genetic susceptibility has been proposed as an important factor for the development and progression of diabetic nephropathy, and various research efforts are being executed worldwide to identify the susceptibility gene for diabetic nephropathy. Numerous single nucleotide polymorphisms have been found in various genes giving rise to various gene variants which have been found to play a major role in genetic susceptibility to diabetic nephropathy. The risk of developing diabetic nephropathy is increased several times by inheriting risk alleles at susceptibility loci of various genes like ACE, IL, TNF-α, COL4A1, e NOS, SOD2, APOE, GLUT, etc. The identification of these genetic variants at a biomarker level could thus, allow the detection of those individuals at high risk for diabetic nephropathy which could thus help in the treatment, diagnosis and early prevention of the disease. The present review discusses about the various gene variants found till date to be associated with diabetic nephropathy.展开更多
Type 2 diabetes mellitus(T2DM) is a complex disease in which both genetic and environmental factors interact in determining impaired β-cell insulin secretion and peripheral insulin resistance. Insulin resistance in m...Type 2 diabetes mellitus(T2DM) is a complex disease in which both genetic and environmental factors interact in determining impaired β-cell insulin secretion and peripheral insulin resistance. Insulin resistance in muscle, liver and fat is a prominent feature of most patients with T2DM and obesity, resulting in a reduced response of these tissues to insulin. Considerable evidence has been accumulated to indicate that heredity is a major determinant of insulin resistance and T2DM. It is believed that, among individuals destined to develop T2DM, hyperinsulinemia is the mechanism by which the pancreatic β-cell initially compensates for deteriorating peripheral insulin sensitivity, thus ensuring normal glucose tolerance. Most of these people will develop T2DM when β-cells fail to compensate. Despite the progress achieved in this field in recent years, the genetic causes of insulin resistance and T2DM remain elusive.Candidate gene association, linkage and genome-wide association studies have highlighted the role of genetic factors in the development of T2DM. Using these strategies, a large number of variants have been identified in many of these genes, most of which may influence both hepatic and peripheral insulin resistance, adipogenesis and β-cell mass and function. Recently, a new gene has been identified by our research group, the HMGA1 gene, whose loss of function can greatly raise the risk of developing T2DM in humans and mice. Functional genetic variants of the HMGA1 gene have been associated with insulin resistance syndromes among white Europeans, Chinese individuals and Americans of Hispanic ancestry. These findings may represent new ways to improve or even prevent T2DM.展开更多
Coronary artery anomalies and variants are relatively uncommon congenital disorders of the coronary artery anatomy and constitute the second most common cause of sudden cardiac death in young competitive athletes. The...Coronary artery anomalies and variants are relatively uncommon congenital disorders of the coronary artery anatomy and constitute the second most common cause of sudden cardiac death in young competitive athletes. The rapid advancement of imaging techniques, including computed tomography, magnetic resonance imaging, intravascular ultrasound and optical coherence tomography, have provided us with a wealth of new information on the subject. Anomalous origin of a coronary artery from the contralateral sinus is the anomaly most frequently associated with sudden cardiac death, in particular if the anomalous coronary artery has a course between the aorta and the pulmonary artery. However, other coronary anomalies, like anomalous origin of the left coronary artery from the pulmonary artery, atresia of the left main stem and coronary fistulae, have also been implicated in cases of sudden cardiac death. Patients are usually asymptomatic, and in most of the cases, coronary anomalies are discovered incidentally during coronary angiography or on autopsy following sudden cardiac death. However, in some cases, symptoms like angina, syncope, heart failure and myocardial infarction may occur. The aims of this article are to present a brief overview of the diverse coronary variants and anomalies, focusing especially on anatomical features, clinical manifestations, risk of sudden cardiac death and pathophysiologic mechanism of symptoms, as well as to provide valuable information regarding diagnostic workup, follow-up, therapeutic choices and timing of surgical treatment.展开更多
The aim of this review is to give a comprehensive and concise overview of coronary embryology and normal coronary anatomy, describe common variants of normal and summarize typical patterns of anomalous coronary artery...The aim of this review is to give a comprehensive and concise overview of coronary embryology and normal coronary anatomy, describe common variants of normal and summarize typical patterns of anomalous coronary artery anatomy. Extensive iconography supports the text, with particular attention to images obtained in vivo using non-invasive imaging. We have divided this article into three groups, according to their frequency in the general population: Normal, normal variant and anomaly. Although congenital coronary artery anomalies are relatively uncommon, they are the second most common cause of sudden cardiac death among young athletes and therefore warrant detailed review. Based on the functional relevance of each abnormality, coronary artery anomalies can be classified as anomalies with obligatory ischemia, without ischemia or with exceptional ischemia. The clinical symptoms may include chest pain, dyspnea, palpitations, syncope, cardiomyopathy, arrhythmia, myocardial infarction and sudden cardiac death. Moreover, it is important to also identify variants and anomalies without clinical relevance in their own right as complications during surgery or angioplasty can occur.展开更多
The core promoter(CP) of the viral genome plays an important role for hepatitis B virus(HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic(pg) RNAs. The CP ...The core promoter(CP) of the viral genome plays an important role for hepatitis B virus(HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic(pg) RNAs. The CP consists of the upper regulatory region and the basa core promoter(BCP). The CP overlaps with the 3'-end of the X open reading frames and the 5'-end of the precore region,and contains cis-acting elements that can independently direct transcription of the precore mRNA and pgRNA. Its transcription regulation is under strict control of viral and cellular factors. Even though this regulatory region exhibits high sequence conservation,when variations appear,they may contribute to the persistence of HBV within the host,leading to chronic infection and cirrhosis,and eventually,hepatocellular carcinoma. Among CP sequence variations,those occurring at BCP may dysregulate viral gene expression with emphasis in the hepatitis B e antigen,and contribute to disease progression. In this review these molecular aspects and pathologic topics of core promoter are deeply evaluated.展开更多
Variants of the arachidonate 5-1ipoxygenase-activating protein (ALOX5AP) gene have been suggested to play an important role in the pathogenesis of atherosclerosis and ischemic stroke. This study was aimed to explore...Variants of the arachidonate 5-1ipoxygenase-activating protein (ALOX5AP) gene have been suggested to play an important role in the pathogenesis of atherosclerosis and ischemic stroke. This study was aimed to explore the association of ALOX5AP variants with ischemic stroke risk in Han Chinese of eastern China. A total of 690 ischemic stroke cases and 767 controls were recruited. The subjects were further subtyped according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. On the basis of that, two polymorphisms of the ALOX5AP gene (rs10507391 and rs12429692) were determined by TaqMan genotyping assay. In addition, plasma leukotriene B4 (LTB4) levels were analyzed in these subjects. There was no evidence of association between the two variants of ALOX5AP and the risk of ischemic stroke or its TOAST-subtypes. Haplotype analysis and stratification analysis according to sex, age, body mass index, hypertension, and diabetes also showed negative association. Analysis of LTB4 levels in a subset of cases and controls revealed that LTB4 levels were significantly higher in ischemic stroke cases than in the controls (70.06± 14.75 ng/L vs 57.34±10.93 ng/L; P = 0.000) and carriers of the T allele of the rs10507391 variant were associated with higher plasma LTB4 levels (P = 0.000). The present study suggests there is no association of the two polymorphisms in the ALOX5AP gene with ischemic stroke risk in Han Chinese of eastern China.展开更多
文摘Molecular virology methods including polymerase chain reaction, cloning and sequencing have revolutionised our understanding of viral genome variation. In the case of hepatitis B virus (HBV), sequencing studies have identified a number of virus variants normally found during the natural course of chronic infection. The appearance of the precore stop codon (with G-for-A substitution at position 1896) and basal core promoter (BCP) (with A-for-T and G-for-A, at positions 1762 and 1764, respectively) variants which reduce or abrogate hepatitis B e antigen (HBeAg) production, heralds the initiation of the seroconversion phase from HBeAg to anti-HBe positivity. The gradual removal of the tolerogenic effect of HBeAg leads to the awakening of the immune response (immune clearance phase). Most patients after HBeAg seroconversion become “inactive HBsAg carriers”. However during the course of infection precore and/or BCP variants may emerge and be selected leading to HBeAg negative chronic hepatitis B (CHB) with high viremia levels (reactivation phase). The prevalence of HBeAg negative CHB has been increasing over the last few decades and has become the commonest type of HBV infection in many countries of the world. This probably reflects the aging of existing HBV carriers and the effective prevention measures restricting new HBV infections. Frequent acute exacerbations accompanied by high viral replication, elevated alanine aminotransferase levels and histological activity are a common feature of HBeAg negative CHB leading to cirrhosis much faster than in HBeAg positive CHB patients.
基金supported by the National High Technology Research and Development Program of China(2015AA020104)the China Human Proteome Project(2014DFB30010)+1 种基金the National Science Foundation of China(31471239,to Leming Shi)the 111 Project(B13016)
文摘Bioinformatics methods for various RNA-seq data analyses are in fast evolution with the improvement of sequencing technologies. However, many challenges still exist in how to efficiently process the RNA-seq data to obtain accurate and comprehensive results. Here we reviewed the strategies for improving diverse transcriptomic studies and the annotation of genetic variants based on RNA-seq data. Mapping RNA-seq reads to the genome and transcriptome represent two distinct methods for quantifying the expression of genes/transcripts. Besides the known genes annotated in current databases, many novel genes/transcripts(especially those long noncoding RNAs) still can be identified on the reference genome using RNA-seq. Moreover, owing to the incompleteness of current reference genomes, some novel genes are missing from them. Genome-guided and de novo transcriptome reconstruction are two effective and complementary strategies for identifying those novel genes/transcripts on or beyond the reference genome. In addition, integrating the genes of distinct databases to conduct transcriptomics and genetics studies can improve the results of corresponding analyses.
文摘Diabetic nephropathy accounts for the most serious microvascular complication of diabetes mellitus. It is suggested that the prevalence of diabetic nephropathy will continue to increase in future posing a major challenge to the healthcare system resulting in increased morbidity and mortality. It occurs as a result of interaction between both genetic and environmental factors in individuals with both type 1 and type 2 diabetes. Genetic susceptibility has been proposed as an important factor for the development and progression of diabetic nephropathy, and various research efforts are being executed worldwide to identify the susceptibility gene for diabetic nephropathy. Numerous single nucleotide polymorphisms have been found in various genes giving rise to various gene variants which have been found to play a major role in genetic susceptibility to diabetic nephropathy. The risk of developing diabetic nephropathy is increased several times by inheriting risk alleles at susceptibility loci of various genes like ACE, IL, TNF-α, COL4A1, e NOS, SOD2, APOE, GLUT, etc. The identification of these genetic variants at a biomarker level could thus, allow the detection of those individuals at high risk for diabetic nephropathy which could thus help in the treatment, diagnosis and early prevention of the disease. The present review discusses about the various gene variants found till date to be associated with diabetic nephropathy.
文摘Type 2 diabetes mellitus(T2DM) is a complex disease in which both genetic and environmental factors interact in determining impaired β-cell insulin secretion and peripheral insulin resistance. Insulin resistance in muscle, liver and fat is a prominent feature of most patients with T2DM and obesity, resulting in a reduced response of these tissues to insulin. Considerable evidence has been accumulated to indicate that heredity is a major determinant of insulin resistance and T2DM. It is believed that, among individuals destined to develop T2DM, hyperinsulinemia is the mechanism by which the pancreatic β-cell initially compensates for deteriorating peripheral insulin sensitivity, thus ensuring normal glucose tolerance. Most of these people will develop T2DM when β-cells fail to compensate. Despite the progress achieved in this field in recent years, the genetic causes of insulin resistance and T2DM remain elusive.Candidate gene association, linkage and genome-wide association studies have highlighted the role of genetic factors in the development of T2DM. Using these strategies, a large number of variants have been identified in many of these genes, most of which may influence both hepatic and peripheral insulin resistance, adipogenesis and β-cell mass and function. Recently, a new gene has been identified by our research group, the HMGA1 gene, whose loss of function can greatly raise the risk of developing T2DM in humans and mice. Functional genetic variants of the HMGA1 gene have been associated with insulin resistance syndromes among white Europeans, Chinese individuals and Americans of Hispanic ancestry. These findings may represent new ways to improve or even prevent T2DM.
文摘Coronary artery anomalies and variants are relatively uncommon congenital disorders of the coronary artery anatomy and constitute the second most common cause of sudden cardiac death in young competitive athletes. The rapid advancement of imaging techniques, including computed tomography, magnetic resonance imaging, intravascular ultrasound and optical coherence tomography, have provided us with a wealth of new information on the subject. Anomalous origin of a coronary artery from the contralateral sinus is the anomaly most frequently associated with sudden cardiac death, in particular if the anomalous coronary artery has a course between the aorta and the pulmonary artery. However, other coronary anomalies, like anomalous origin of the left coronary artery from the pulmonary artery, atresia of the left main stem and coronary fistulae, have also been implicated in cases of sudden cardiac death. Patients are usually asymptomatic, and in most of the cases, coronary anomalies are discovered incidentally during coronary angiography or on autopsy following sudden cardiac death. However, in some cases, symptoms like angina, syncope, heart failure and myocardial infarction may occur. The aims of this article are to present a brief overview of the diverse coronary variants and anomalies, focusing especially on anatomical features, clinical manifestations, risk of sudden cardiac death and pathophysiologic mechanism of symptoms, as well as to provide valuable information regarding diagnostic workup, follow-up, therapeutic choices and timing of surgical treatment.
基金financial support from the Department of Health via the National Institute for Health Research comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King's College London and King’s College Hospital NHS Foundation TrustThe Centre of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC under grant number WT 088641/Z/09/Z+2 种基金King’s College London and UCL Comprehensive Cancer Imaging CentreFunded by the CRUK and EPSRC in association with the MRC and Do H (England)Funded by the British Heart Foundation award RE/08/003
文摘The aim of this review is to give a comprehensive and concise overview of coronary embryology and normal coronary anatomy, describe common variants of normal and summarize typical patterns of anomalous coronary artery anatomy. Extensive iconography supports the text, with particular attention to images obtained in vivo using non-invasive imaging. We have divided this article into three groups, according to their frequency in the general population: Normal, normal variant and anomaly. Although congenital coronary artery anomalies are relatively uncommon, they are the second most common cause of sudden cardiac death among young athletes and therefore warrant detailed review. Based on the functional relevance of each abnormality, coronary artery anomalies can be classified as anomalies with obligatory ischemia, without ischemia or with exceptional ischemia. The clinical symptoms may include chest pain, dyspnea, palpitations, syncope, cardiomyopathy, arrhythmia, myocardial infarction and sudden cardiac death. Moreover, it is important to also identify variants and anomalies without clinical relevance in their own right as complications during surgery or angioplasty can occur.
文摘The core promoter(CP) of the viral genome plays an important role for hepatitis B virus(HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic(pg) RNAs. The CP consists of the upper regulatory region and the basa core promoter(BCP). The CP overlaps with the 3'-end of the X open reading frames and the 5'-end of the precore region,and contains cis-acting elements that can independently direct transcription of the precore mRNA and pgRNA. Its transcription regulation is under strict control of viral and cellular factors. Even though this regulatory region exhibits high sequence conservation,when variations appear,they may contribute to the persistence of HBV within the host,leading to chronic infection and cirrhosis,and eventually,hepatocellular carcinoma. Among CP sequence variations,those occurring at BCP may dysregulate viral gene expression with emphasis in the hepatitis B e antigen,and contribute to disease progression. In this review these molecular aspects and pathologic topics of core promoter are deeply evaluated.
基金supported by a grant from the Health Bureau of Jiangsu Province (No. H201005)
文摘Variants of the arachidonate 5-1ipoxygenase-activating protein (ALOX5AP) gene have been suggested to play an important role in the pathogenesis of atherosclerosis and ischemic stroke. This study was aimed to explore the association of ALOX5AP variants with ischemic stroke risk in Han Chinese of eastern China. A total of 690 ischemic stroke cases and 767 controls were recruited. The subjects were further subtyped according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. On the basis of that, two polymorphisms of the ALOX5AP gene (rs10507391 and rs12429692) were determined by TaqMan genotyping assay. In addition, plasma leukotriene B4 (LTB4) levels were analyzed in these subjects. There was no evidence of association between the two variants of ALOX5AP and the risk of ischemic stroke or its TOAST-subtypes. Haplotype analysis and stratification analysis according to sex, age, body mass index, hypertension, and diabetes also showed negative association. Analysis of LTB4 levels in a subset of cases and controls revealed that LTB4 levels were significantly higher in ischemic stroke cases than in the controls (70.06± 14.75 ng/L vs 57.34±10.93 ng/L; P = 0.000) and carriers of the T allele of the rs10507391 variant were associated with higher plasma LTB4 levels (P = 0.000). The present study suggests there is no association of the two polymorphisms in the ALOX5AP gene with ischemic stroke risk in Han Chinese of eastern China.