为了获得有较高电化学放电容量和良好循环稳定性的 V 基固溶体贮氢电极合金,采用感应熔炼方法制备了一系列含 Al 和 Fe 的 V 基贮氢电极合金V1.95 Ti0.5 Cr0.5 NiO 0.05 Alx Fey (x ,y =0~0.05),通过 X射线衍射、金相显微镜和...为了获得有较高电化学放电容量和良好循环稳定性的 V 基固溶体贮氢电极合金,采用感应熔炼方法制备了一系列含 Al 和 Fe 的 V 基贮氢电极合金V1.95 Ti0.5 Cr0.5 NiO 0.05 Alx Fey (x ,y =0~0.05),通过 X射线衍射、金相显微镜和电化学测试等手段研究了添加不同含量的 Al 和 Fe 对合金显微组织和电化学性能的影响.结果表明,所有合金均由 BCC 结构的 V 基固溶体主相和 TiNi 基第二相组成.电化学测试表明,增加 Al 含量后,合金的最大放电容量由345.2 mAh/g (x =0)增加到430.7 mAh/g(x =0.05),同时合金的高倍率放电性能、交换电流密度和氢的扩散系数得到改善.而随着 Fe 含量的增加,合金的循环稳定性能得到了一定的提高,但是最大放电容量有所降低.展开更多
文摘为了获得有较高电化学放电容量和良好循环稳定性的 V 基固溶体贮氢电极合金,采用感应熔炼方法制备了一系列含 Al 和 Fe 的 V 基贮氢电极合金V1.95 Ti0.5 Cr0.5 NiO 0.05 Alx Fey (x ,y =0~0.05),通过 X射线衍射、金相显微镜和电化学测试等手段研究了添加不同含量的 Al 和 Fe 对合金显微组织和电化学性能的影响.结果表明,所有合金均由 BCC 结构的 V 基固溶体主相和 TiNi 基第二相组成.电化学测试表明,增加 Al 含量后,合金的最大放电容量由345.2 mAh/g (x =0)增加到430.7 mAh/g(x =0.05),同时合金的高倍率放电性能、交换电流密度和氢的扩散系数得到改善.而随着 Fe 含量的增加,合金的循环稳定性能得到了一定的提高,但是最大放电容量有所降低.