The p27Kip1 is a cell cycle repressor protein that regulates primarily the cell cycle transition from G1 to S phase and hence the DNA replication is in the S phase and cell division in the M phase. Expression of p27Ki...The p27Kip1 is a cell cycle repressor protein that regulates primarily the cell cycle transition from G1 to S phase and hence the DNA replication is in the S phase and cell division in the M phase. Expression of p27Kip1 protein has dual roles for both cancer prevention and promotion. For example, numerous nutritional and chemopreventive anti-cancer agents specifically increase the expression of p27Kip1 protein without directly affecting the expression of any other cell cycle regulatory proteins. On the other hand, pro-cancer agents (like glucose, insulin and other growth factors frequently seen in obesity and/or diabetes) specifically decrease the expression of p27Kip1 protein without directly affecting the expression of any other cell cycle regulatory proteins. Unlike expression of any other cell cycle regulatory proteins, expression of p27Kip1 protein is very unusual. The mRNA of p27Kip1 has a very long and unusual 5’-untranslated region (from -575 to -1 in human). It appears that the 5’-untranslated region of p27Kip1 mRNA forms two alternative secondary structures. One increases the expression of p27Kip1 protein when anti-cancer agents are added and another decrease the expression of p27K1p1 when pro-cancer agents are added. For this short concept proposal, Dr. Albert Einstein’s “visualized thought experiments (German: Gedanken experiment)” were used as a fundamental tool for understanding how either anti- or pro-cancer agents bring the primary structure of the 5’-untranslated region of p27Kip1 mRNA into two alternative secondary structures, thereby either increasing or decreasing, respectively, the translation initiation of p27Kip1 protein.展开更多
Research Aims: Obesity and type 2 diabetes are known to be associated with increased risk of various types of cancer. However, the molecular biological mechanism of how the risk of cancer is increased in obesity or ty...Research Aims: Obesity and type 2 diabetes are known to be associated with increased risk of various types of cancer. However, the molecular biological mechanism of how the risk of cancer is increased in obesity or type 2 diabetes is not known. The aim this research is to investigate if the decreased expression of p27Kip1, a cell cycle repressor protein, plays a central role in this mechanism. Research Methods, Previous Studies and Theoretical Backgrounds: It is well known that the expression of p27Kip1 is increased by numerous nutritional or chemopreventive anti-cancer agents. But it has never been known that the expression of p27Kip1 could be decreased, rather than increased, and the risk of cancer could be increased, rather than decreased. This problem was solved recently and this new analytical method was used in this study. Results: 1) The expression of p27Kip1 was indeed significantly decreased in human obese type 2 diabetic individuals relative to the lean normal controls. 2) The expression of p27Kip1 was also significantly decreased in genetically obese rodents relative to the lean normal controls. Additionally, in obese rodents, the concentrations of glucose or insulin were significantly increased relative to the lean normal controls. 3) Using human cells cultured in vitro it was found that the increased concentrations of glucose or insulin decrease the expression of p27Kip1. Conclusions: These results suggest that higher concentrations of glucose or insulin increase the risk of various types of cancer in obesity or type 2 diabetes by decreasing the expression of p27Kip1.展开更多
文摘The p27Kip1 is a cell cycle repressor protein that regulates primarily the cell cycle transition from G1 to S phase and hence the DNA replication is in the S phase and cell division in the M phase. Expression of p27Kip1 protein has dual roles for both cancer prevention and promotion. For example, numerous nutritional and chemopreventive anti-cancer agents specifically increase the expression of p27Kip1 protein without directly affecting the expression of any other cell cycle regulatory proteins. On the other hand, pro-cancer agents (like glucose, insulin and other growth factors frequently seen in obesity and/or diabetes) specifically decrease the expression of p27Kip1 protein without directly affecting the expression of any other cell cycle regulatory proteins. Unlike expression of any other cell cycle regulatory proteins, expression of p27Kip1 protein is very unusual. The mRNA of p27Kip1 has a very long and unusual 5’-untranslated region (from -575 to -1 in human). It appears that the 5’-untranslated region of p27Kip1 mRNA forms two alternative secondary structures. One increases the expression of p27Kip1 protein when anti-cancer agents are added and another decrease the expression of p27K1p1 when pro-cancer agents are added. For this short concept proposal, Dr. Albert Einstein’s “visualized thought experiments (German: Gedanken experiment)” were used as a fundamental tool for understanding how either anti- or pro-cancer agents bring the primary structure of the 5’-untranslated region of p27Kip1 mRNA into two alternative secondary structures, thereby either increasing or decreasing, respectively, the translation initiation of p27Kip1 protein.
文摘Research Aims: Obesity and type 2 diabetes are known to be associated with increased risk of various types of cancer. However, the molecular biological mechanism of how the risk of cancer is increased in obesity or type 2 diabetes is not known. The aim this research is to investigate if the decreased expression of p27Kip1, a cell cycle repressor protein, plays a central role in this mechanism. Research Methods, Previous Studies and Theoretical Backgrounds: It is well known that the expression of p27Kip1 is increased by numerous nutritional or chemopreventive anti-cancer agents. But it has never been known that the expression of p27Kip1 could be decreased, rather than increased, and the risk of cancer could be increased, rather than decreased. This problem was solved recently and this new analytical method was used in this study. Results: 1) The expression of p27Kip1 was indeed significantly decreased in human obese type 2 diabetic individuals relative to the lean normal controls. 2) The expression of p27Kip1 was also significantly decreased in genetically obese rodents relative to the lean normal controls. Additionally, in obese rodents, the concentrations of glucose or insulin were significantly increased relative to the lean normal controls. 3) Using human cells cultured in vitro it was found that the increased concentrations of glucose or insulin decrease the expression of p27Kip1. Conclusions: These results suggest that higher concentrations of glucose or insulin increase the risk of various types of cancer in obesity or type 2 diabetes by decreasing the expression of p27Kip1.