In this paper, we define the concepts of (η,h)-quasi pseudo-monotone operators on compact set in locally convex Hausdorff topological vector spaces and prove the existence results of solutions for a class of generali...In this paper, we define the concepts of (η,h)-quasi pseudo-monotone operators on compact set in locally convex Hausdorff topological vector spaces and prove the existence results of solutions for a class of generalized quasi variational type inequalities in locally convex Hausdorff topological vector spaces.展开更多
In this paper, we introduce and study the system of generalized vector quasi-variational-like inequalities in Hausdorff topological vector spaces, which include the system of vector quasi-variational-like inequalities...In this paper, we introduce and study the system of generalized vector quasi-variational-like inequalities in Hausdorff topological vector spaces, which include the system of vector quasi-variational-like inequalities, the system of vector variational-like inequalities, the system of vector quasi-variational inequalities, and several other systems as special cases. Moreover, a number of C-diagonal quasiconvexity properties are proposed for set-valued maps, which are natural generalizations of the g-diagonal quasiconvexity for real functions. Together with an application of continuous selection and fixed-point theorems, these conditions enable us to prove unified existence results of solutions for the system of generalized vector quasi-variational-like inequalities. The results of this paper can be seen as extensions and generalizations of several known results in the literature.展开更多
文摘In this paper, we define the concepts of (η,h)-quasi pseudo-monotone operators on compact set in locally convex Hausdorff topological vector spaces and prove the existence results of solutions for a class of generalized quasi variational type inequalities in locally convex Hausdorff topological vector spaces.
文摘In this paper, we introduce and study the system of generalized vector quasi-variational-like inequalities in Hausdorff topological vector spaces, which include the system of vector quasi-variational-like inequalities, the system of vector variational-like inequalities, the system of vector quasi-variational inequalities, and several other systems as special cases. Moreover, a number of C-diagonal quasiconvexity properties are proposed for set-valued maps, which are natural generalizations of the g-diagonal quasiconvexity for real functions. Together with an application of continuous selection and fixed-point theorems, these conditions enable us to prove unified existence results of solutions for the system of generalized vector quasi-variational-like inequalities. The results of this paper can be seen as extensions and generalizations of several known results in the literature.