为了研究气液同轴离心式喷嘴缩进室内部非定常流动过程,采用Level Set和VOF(Volume of fluid)相耦合的方法,结合网格自适应技术对缩进长度为8mm的液体中心式气液同轴离心式喷嘴流动过程进行了数值仿真研究,计算得到了较为精细的液膜一...为了研究气液同轴离心式喷嘴缩进室内部非定常流动过程,采用Level Set和VOF(Volume of fluid)相耦合的方法,结合网格自适应技术对缩进长度为8mm的液体中心式气液同轴离心式喷嘴流动过程进行了数值仿真研究,计算得到了较为精细的液膜一次破碎过程、流场结构和压力振荡特性。结果表明:液膜的破碎模式受气液比的影响较大,随气液比的增加,液膜破碎模式由波动破碎逐步转变为湍流破碎。此外,清晰获得了自激振荡过程,分析了缩进室内部压力场及速度场分布特征。研究发现,随着气体压降增加,气体环缝出口会出现膨胀波和激波,形成一个“扇环形”的超声速流场区域;激波后气流分离,出现旋涡,形成局部高压区,旋涡中心随激波面周期性地上下移动,致使局部压力出现周期性振荡。展开更多
文摘为了研究气液同轴离心式喷嘴缩进室内部非定常流动过程,采用Level Set和VOF(Volume of fluid)相耦合的方法,结合网格自适应技术对缩进长度为8mm的液体中心式气液同轴离心式喷嘴流动过程进行了数值仿真研究,计算得到了较为精细的液膜一次破碎过程、流场结构和压力振荡特性。结果表明:液膜的破碎模式受气液比的影响较大,随气液比的增加,液膜破碎模式由波动破碎逐步转变为湍流破碎。此外,清晰获得了自激振荡过程,分析了缩进室内部压力场及速度场分布特征。研究发现,随着气体压降增加,气体环缝出口会出现膨胀波和激波,形成一个“扇环形”的超声速流场区域;激波后气流分离,出现旋涡,形成局部高压区,旋涡中心随激波面周期性地上下移动,致使局部压力出现周期性振荡。