作物叶面积指数的遥感反演是农业定量遥感研究热点之一,利用无人机遥感监测系统获取农作物光谱信息精确反演叶面积指数对精准农业生产与管理意义重大。本研究以山东省嘉祥县一带的大豆种植区为试验区,设计以多旋翼无人机为平台同步搭载C...作物叶面积指数的遥感反演是农业定量遥感研究热点之一,利用无人机遥感监测系统获取农作物光谱信息精确反演叶面积指数对精准农业生产与管理意义重大。本研究以山东省嘉祥县一带的大豆种植区为试验区,设计以多旋翼无人机为平台同步搭载Canon Power Shot G16数码相机和ADC-Lite多光谱传感器组成的无人机农情监测系统开展试验,分别获取大豆结荚期和鼓粒期的遥感影像。使用比值植被指数(RVI)、归一化植被指数(NDVI)、土壤调整植被指数(SAVI)、差值植被指数(DVI)、三角植被指数(TVI)5种植被指数,结合田间同步实测叶面积指数(leaf area index,LAI)数据,采用经验模型法分别构建了单变量和多变量LAI反演模型,通过决定系数(R2)、均方根误差(RMSE)和估测精度(EA)3个指标筛选出最佳模型。研究表明,有选择性地分时期进行农作物的叶面积指数反演是必要的,鼓粒期作为2个生育期中大豆LAI反演的最佳时期,其NDVI线性回归模型对大豆LAI的解释能力最强,R2=0.829,RMSE=0.301,反演大豆LAI最准确,EA=85.4%,生成的鼓粒期大豆LAI分布图反映了当地当时大豆真实长势情况。因此,以多旋翼无人机为平台同步搭载高清数码相机和多光谱传感器组成的无人机农情监测系统对研究大豆叶面积指数反演是可行性,可作为指导精准农业研究的一种新方法。展开更多
农作物叶面积指数(leaf area index,LAI)遥感监测具有快速、无损的优势。该文以低空无人机作为遥感平台,使用新型成像光谱仪获取的农田高光谱影像数据对棉花LAI进行反演。利用影像高光谱分辨率的特点,针对传统固定波段植被指数(fixed-ba...农作物叶面积指数(leaf area index,LAI)遥感监测具有快速、无损的优势。该文以低空无人机作为遥感平台,使用新型成像光谱仪获取的农田高光谱影像数据对棉花LAI进行反演。利用影像高光谱分辨率的特点,针对传统固定波段植被指数(fixed-bandvegetation index,F_VI)进行改进,通过动态搜索相应植被指数定义所使用波段范围内的反射率极值的方法,计算与各类植被指数对应的极值植被指数(extremum vegetation index,E_VI)。分别以原始全波段光谱反射率、连续投影算法(successive projections algorithm,SPA)提取的有效波段反射率以及各类F_VI和E_VI作为自变量,使用最小二乘和偏最小二乘(partial least squares,PLS)回归等方法构建LAI遥感估算模型。结果显示:1)以植被指数为自变量的模型估算效果(验证R2最高为0.85)优于以光谱反射率作为自变量的模型(验证R2最高为0.59);2)使用E_VI作为自变量能够显著提高LAI的估测精度(验证R2最大提高了0.11);3)使用PLS回归算法结合多个E_VI建立的LAI-E_VIs-PLS模型精度最高。使用LAI-E_VIs-PLS模型对棉花地块高光谱影像进行反演,制作棉花LAI空间分布图,取得良好的估算结果(验证R2=0.88,RMSE=0.29),为农作物LAI遥感监测提供了新的技术手段。展开更多
文摘作物叶面积指数的遥感反演是农业定量遥感研究热点之一,利用无人机遥感监测系统获取农作物光谱信息精确反演叶面积指数对精准农业生产与管理意义重大。本研究以山东省嘉祥县一带的大豆种植区为试验区,设计以多旋翼无人机为平台同步搭载Canon Power Shot G16数码相机和ADC-Lite多光谱传感器组成的无人机农情监测系统开展试验,分别获取大豆结荚期和鼓粒期的遥感影像。使用比值植被指数(RVI)、归一化植被指数(NDVI)、土壤调整植被指数(SAVI)、差值植被指数(DVI)、三角植被指数(TVI)5种植被指数,结合田间同步实测叶面积指数(leaf area index,LAI)数据,采用经验模型法分别构建了单变量和多变量LAI反演模型,通过决定系数(R2)、均方根误差(RMSE)和估测精度(EA)3个指标筛选出最佳模型。研究表明,有选择性地分时期进行农作物的叶面积指数反演是必要的,鼓粒期作为2个生育期中大豆LAI反演的最佳时期,其NDVI线性回归模型对大豆LAI的解释能力最强,R2=0.829,RMSE=0.301,反演大豆LAI最准确,EA=85.4%,生成的鼓粒期大豆LAI分布图反映了当地当时大豆真实长势情况。因此,以多旋翼无人机为平台同步搭载高清数码相机和多光谱传感器组成的无人机农情监测系统对研究大豆叶面积指数反演是可行性,可作为指导精准农业研究的一种新方法。
文摘农作物叶面积指数(leaf area index,LAI)遥感监测具有快速、无损的优势。该文以低空无人机作为遥感平台,使用新型成像光谱仪获取的农田高光谱影像数据对棉花LAI进行反演。利用影像高光谱分辨率的特点,针对传统固定波段植被指数(fixed-bandvegetation index,F_VI)进行改进,通过动态搜索相应植被指数定义所使用波段范围内的反射率极值的方法,计算与各类植被指数对应的极值植被指数(extremum vegetation index,E_VI)。分别以原始全波段光谱反射率、连续投影算法(successive projections algorithm,SPA)提取的有效波段反射率以及各类F_VI和E_VI作为自变量,使用最小二乘和偏最小二乘(partial least squares,PLS)回归等方法构建LAI遥感估算模型。结果显示:1)以植被指数为自变量的模型估算效果(验证R2最高为0.85)优于以光谱反射率作为自变量的模型(验证R2最高为0.59);2)使用E_VI作为自变量能够显著提高LAI的估测精度(验证R2最大提高了0.11);3)使用PLS回归算法结合多个E_VI建立的LAI-E_VIs-PLS模型精度最高。使用LAI-E_VIs-PLS模型对棉花地块高光谱影像进行反演,制作棉花LAI空间分布图,取得良好的估算结果(验证R2=0.88,RMSE=0.29),为农作物LAI遥感监测提供了新的技术手段。