期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
Why It Is Problematic to Calculate Probabilities of Findings Given Range Null Hypotheses
1
作者 David Trafimow 《Open Journal of Statistics》 2017年第3期483-499,共17页
An important problem with null hypothesis significance testing, as it is normally performed, is that it is uninformative to reject a point null hypothesis [1]. A way around this problem is to use range null hypotheses... An important problem with null hypothesis significance testing, as it is normally performed, is that it is uninformative to reject a point null hypothesis [1]. A way around this problem is to use range null hypotheses [2]. But the use of range null hypotheses also is problematic. Aside from the usual issues of whether null hypothesis significance tests can be justified at all, there is an issue that is specific to range null hypotheses. It is not straightforward how to calculate the probability of the data given a range null hypothesis. The traditional way is to use the single point that maximizes the obtained p-value. The Bayesian alternative is to propose a prior probability distribution and integrate across it. Because frequentists and Bayesians disagree about a variety of issues, especially those pertaining to whether it is permissible to assign probabilities to hypotheses, and what gets lost in the shuffle is that the two camps actually come to different answers for the probability of the data given a range null hypothesis. Because the probability of the data given the hypothesis is a precursor for both camps, for drawing conclusions about hypotheses, different values for this probability for the different camps is crucial but seldom acknowledged. The goal of the present article is to bring out the problem in a manner accessible to researchers without strong mathematical or statistical backgrounds. 展开更多
关键词 RANGE Hypotheses One-Tailed Test RANGE NULL HYPOTHESIS uninformative Hypotheses
下载PDF
Assessing canopy nitrogen and carbon content in maize by canopy spectral reflectance and uninformative variable elimination 被引量:2
2
作者 Zhonglin Wang Junxu Chen +6 位作者 Jiawei Zhang Xianming Tan Muhammad Ali Raza Jun Ma Yan Zhu Feng Yang Wenyu Yang 《The Crop Journal》 SCIE CSCD 2022年第5期1224-1238,共15页
Assessing canopy nitrogen content(CNC) and canopy carbon content(CCC) of maize by hyperspectral remote sensing data permits estimating cropland productivity, protecting farmland ecology, and investigating the nitrogen... Assessing canopy nitrogen content(CNC) and canopy carbon content(CCC) of maize by hyperspectral remote sensing data permits estimating cropland productivity, protecting farmland ecology, and investigating the nitrogen and carbon cycles in the atmosphere. This study aimed to assess maize CNC and CCC using canopy hyperspectral information and uninformative variable elimination(UVE). Vegetation indices(VIs) and wavelet functions were adopted for estimating CNC and CCC under varying water and nitrogen regimes. Linear, nonlinear, and partial least squares(PLS) regression models were fitted to VIs and wavelet functions to estimate CNC and CCC, and were evaluated for their prediction accuracy.UVE was used to eliminate uninformative variables, improve the prediction accuracy of the models, and simplify the PLS regression models(UVE-PLS). For estimating CNC and CCC, the normalized difference vegetation index(NDVI, based on red edge and NIR wavebands) yielded the highest correlation coefficients(r > 0.88). PLS regression models showed the lowest root mean square error(RMSE) among all models. However, PLS regression models required nine VIs and four wavelet functions, increasing their complexity. UVE was used to retain valid spectral parameters and optimize the PLS regression models.UVE-PLS regression models improved validation accuracy and resulted in more accurate CNC and CCC than the PLS regression models. Thus, canopy spectral reflectance integrated with UVE-PLS can accurately reflect maize leaf nitrogen and carbon status. 展开更多
关键词 Canopy nitrogen content Canopy carbon content MAIZE Canopy spectral reflectance uninformative variable elimination
下载PDF
A variable differential consensus method for improving the quantitative near-infrared spectroscopic analysis 被引量:1
3
作者 DU GuoRong CAI WenSheng SHAO XueGuang 《Science China Chemistry》 SCIE EI CAS 2012年第9期1946-1952,共7页
Consensus methods have presented promising tools for improving the reliability of quantitative models in near-infrared(NIR) spectroscopic analysis.A strategy for improving the performance of consensus methods in multi... Consensus methods have presented promising tools for improving the reliability of quantitative models in near-infrared(NIR) spectroscopic analysis.A strategy for improving the performance of consensus methods in multivariate calibration of NIR spectra is proposed.In the approach,a subset of non-collinear variables is generated using successive projections algorithm(SPA) for each variable in the reduced spectra by uninformative variables elimination(UVE).Then sub-models are built using the variable subsets and the calibration subsets determined by Monte Carlo(MC) re-sampling,and the sub-model that produces minimal error in cross validation is selected as a member model.With repetition of the MC re-sampling,a series of member models are built and a consensus model is achieved by averaging all the member models.Since member models are built with the best variable subset and the randomly selected calibration subset,both the quality and the diversity of the member models are insured for the consensus model.Two NIR spectral datasets of tobacco lamina are used to investigate the proposed method.The superiority of the method in both accuracy and reliability is demonstrated. 展开更多
关键词 near infrared spectroscopy multivariate calibration consensus model variable selection uninformative variable elim-ination successive projections algorithm
原文传递
Online quantitative analysis of soluble solids content in navel oranges using visible-nearinfrared spectroscopy and variable selection methods
4
作者 Yande Liu Yanrui Zhou Yuanyuan Pan 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第6期1-8,共8页
Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis o... Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis of soluble solids content(SSC)in navel oranges.Moving window partial least squares(MW-PLS),Monte Carlo uninformative variables elimination(MC-UVE)and wavelet transform(WT)combined with the MC-UVE method were used to select the spectral variables and develop the calibration models of online analysis of SSC in navel oranges.The performances of these methods were compared for modeling the Vis NIR data sets of navel orange samples.Results show that the WT-MC-UVE methods gave better calibration models with the higher correlation cofficient(r)of 0.89 and lower root mean square error of prediction(RMSEP)of 0.54 at 5 fruits per second.It concluded that Vis NIR spectroscopy coupled with WT-MC-UVE may be a fast and efective tool for online quantitative analysis of SSC in navel oranges. 展开更多
关键词 Vis NIR spectroscopy variables selection soluble solids content wavelet transform moving window paurtial least squares Monte Carlo uninformative variables elimination
下载PDF
基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究 被引量:49
5
作者 吴迪 吴洪喜 +2 位作者 蔡景波 黄振华 何勇 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第6期423-427,共5页
应用无信息变量消除法结合连续投影算法对可见-近红外光谱区进行有效波长的选择,选择后的波长作为输入变量建立最小二乘-支持向量机模型,对白虾属中三种典型种,脊尾白虾、秀丽白虾和东方白虾进行鉴别分类.实验采用Kennard-Stone算法选取... 应用无信息变量消除法结合连续投影算法对可见-近红外光谱区进行有效波长的选择,选择后的波长作为输入变量建立最小二乘-支持向量机模型,对白虾属中三种典型种,脊尾白虾、秀丽白虾和东方白虾进行鉴别分类.实验采用Kennard-Stone算法选取150个样本作为建模集,50个样本作为预测集,通过UVE-SPA优选了数值分别为392、431、517、551、595、627、676、734、760、861、943和1018 nm的12个波长为LS-SVM的输入变量,建立了白虾种分类模型.该模型对50个预测集样本检验的准确率达到了92.00%.结果表明,采用可见-近红外光谱对白虾种进行鉴别是可行的,UVE-SPA能够有效地进行波长选择,使LS-SVM模型获得最优的分类结果. 展开更多
关键词 可见-近红外光谱 无信息变量消除 连续投影算法 最小二乘-支持向量机
下载PDF
蒙特卡罗无信息变量消除方法用于近红外光谱预测果品硬度和表面色泽的研究 被引量:27
6
作者 郝勇 孙旭东 +2 位作者 潘圆媛 高荣杰 刘燕德 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第5期1225-1229,共5页
近红外光谱(NIRS)分析方法用于梨的硬度和表面色泽的无损快速定量分析,提高了分析方法的预测精度,消除无信息建模变量对模型稳定性的影响。分别采用蒙特卡罗无信息变量消除(Monte Carlo unin-formative variables elimination,MC-UVE)... 近红外光谱(NIRS)分析方法用于梨的硬度和表面色泽的无损快速定量分析,提高了分析方法的预测精度,消除无信息建模变量对模型稳定性的影响。分别采用蒙特卡罗无信息变量消除(Monte Carlo unin-formative variables elimination,MC-UVE)和基于小波变换(wavelet transform,WT)的蒙特卡罗无信息变量消除(WT-MC-UVE)方法对梨的硬度和表面色泽的建模变量进行筛选。结果表明,对于硬度模型,采用WT-MC-UVE方法,210个变量可以得到和原始光谱(1 451个变量)近似的预测结果;对于表面色泽的预测模型,采用WT-MC-UVE方法后,建模变量减少为220,模型的预测均方根误差从1.06减小为0.90,预测相关系数从0.975提高为0.981。因此,WT-MC-UVE方法可以有效地选择建模变量,既能提高模型的稳定性,又能提高多元校正的预测精度。 展开更多
关键词 近红外光谱 硬度 表面色泽 蒙特卡罗 无信息变量消除
下载PDF
基于变量选择的蚕茧茧层量可见-近红外光谱无损检测 被引量:24
7
作者 黄凌霞 吴迪 +4 位作者 金航峰 赵丽华 何勇 金佩华 楼程富 《农业工程学报》 EI CAS CSCD 北大核心 2010年第2期231-236,共6页
以蚕茧茧层量为研究对象,研究了基于可见-近红外光谱技术的蚕茧茧层量无损检测方法。采用最小二乘支持向量机(least square-support vector machine,LS-SVM)建立可见-近红外光谱模型。采用无信息变量消除算法(uninformative variable el... 以蚕茧茧层量为研究对象,研究了基于可见-近红外光谱技术的蚕茧茧层量无损检测方法。采用最小二乘支持向量机(least square-support vector machine,LS-SVM)建立可见-近红外光谱模型。采用无信息变量消除算法(uninformative variable elimination,UVE)与连续投影算法(successive projections algorithm,SPA)相结合选取光谱有效波长。结果表明,基于UVE-SPA法进行变量选择,最终将原始光谱的600个光谱变量减少到了8个(673,937,963,982,989,992,995和1008nm)。基于此8个变量建立的LS-SVM模型得到了预测集的确定系数(Rp2)为0.5354,误差均方根(RMSEP)为0.0373的预测结果。表明可见-近红外光谱可以用于对蚕茧的茧层量进行无损检测,同时UVE-SPA是一种有效的光谱变量选择方法。 展开更多
关键词 近红外光谱 无损检测 模型分析 蚕茧 茧层量 无信息变量消除算法(UVE) 连续投影算法(SPA)
下载PDF
基于可见-近红外光谱技术的水稻穗颈瘟染病程度分级方法研究 被引量:21
8
作者 吴迪 曹芳 +3 位作者 张浩 孙光明 冯雷 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第12期3295-3299,共5页
采用Vis-NIR技术对水稻穗颈瘟染病程度分级方法进行了研究。分别基于原始光谱,变量标准化(SNV)预处理后和多元散射校正(MSC)预处理后的光谱,应用无信息变量消除法(UVE)结合连续投影算法(SPA)对Vis-NIR光谱区进行有效波长的选择。选择后... 采用Vis-NIR技术对水稻穗颈瘟染病程度分级方法进行了研究。分别基于原始光谱,变量标准化(SNV)预处理后和多元散射校正(MSC)预处理后的光谱,应用无信息变量消除法(UVE)结合连续投影算法(SPA)对Vis-NIR光谱区进行有效波长的选择。选择后的波长作为输入变量建立最小二乘-支持向量机(LS-SVM)模型。结果表明SNV-UVE-SPA建立的LS-SVM模型预测效果最好。通过SNV-UVE-SPA从全波段600个波长中选择了6个最能够反应光谱信息的波长(459,546,569,590,775和981nm)。SNV-UVE-SPA-LS-SVM组合模型对预测集样本预测得到的确定系数(Rp2),预测集的预测标准差(RMSEP)和剩余预测偏差(RPD)分别达到了0.979,0.507和6.580。结果表明,采用Vis-NIR光谱技术对水稻穗颈瘟染病程度进行分级是可行的。通过UVE-SPA得到的有效波长能够很好地代替全波长。 展开更多
关键词 Vis-NIR光谱 水稻穗颈瘟 无信息变量消除法 连续投影算法 变量选择
下载PDF
无信息变量消除法变量筛选优化烟草中总氮和总糖的定量模型 被引量:21
9
作者 李倩倩 田旷达 +5 位作者 李祖红 郑波 赖衍清 唐果 宋相中 闵顺耕 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第6期917-921,共5页
应用近红外光谱技术对烟草常规化学成分中总氮和总糖进行了测定。无信息变量消除(UVE)剔除光谱矩阵中没有有效信息的数据点,并用偏最小二乘方法(PLS)建立总氮和总糖的定量分析模型,外部检验对模型效果进行了评价。总氮定量模型校正集的... 应用近红外光谱技术对烟草常规化学成分中总氮和总糖进行了测定。无信息变量消除(UVE)剔除光谱矩阵中没有有效信息的数据点,并用偏最小二乘方法(PLS)建立总氮和总糖的定量分析模型,外部检验对模型效果进行了评价。总氮定量模型校正集的决定系数R2为93.35%,标准偏差SEC为0.10;外部检验集的决定系数R2为94.09%,标准偏差SEP为0.11,相对标准偏差RSD为6.12%;总糖的定量模型校正集的决定系数R2为98.20%,标准偏差SEC为0.95;外部检验集样品的决定系数R2为98.01%,标准偏差SEP为0.78,相对标准偏差RSD为2.93%。结果表明:采用UVE建立的总氮与总糖的模型优于用全谱建立的模型,UVE提高了PLS模型的预测能力。 展开更多
关键词 近红外 烟草 无信息变量消除 偏最小二乘法
下载PDF
基于偏最小二乘回归的藻类荧光光谱特征波长选取 被引量:19
10
作者 余晓娅 张玉钧 +5 位作者 殷高方 肖雪 赵南京 段静波 石朝毅 方丽 《光学学报》 EI CAS CSCD 北大核心 2014年第9期294-299,共6页
针对藻类荧光光谱解析中常见的信息冗余和光谱相关性问题,基于偏最小二乘(PLS)的方法,提出了区间蒙特卡罗偏最小二乘(IMC-PLS)方法,有效地解决了特征波长的选取问题。根据特征色素荧光峰位置预选出特征区域,综合利用了此特征区域内单个... 针对藻类荧光光谱解析中常见的信息冗余和光谱相关性问题,基于偏最小二乘(PLS)的方法,提出了区间蒙特卡罗偏最小二乘(IMC-PLS)方法,有效地解决了特征波长的选取问题。根据特征色素荧光峰位置预选出特征区域,综合利用了此特征区域内单个波段的信息和不同的随机波段组合对于模型的贡献,基于荧光光谱的三线性特点,联合了发射波长和激发波长的信息。研究结果表明,与无信息变量消除算法(UVE)相比,IMC-PLS反演4种藻类浓度得到的平均相对标准偏差分别降低了0%、34.3%、55.9%、30.5%,选择出的特征波长数和运算时间分别减少了80.1%、81.3%,IMC-PLS方法有效地解决了实时监测问题,也为离散三维荧光光谱仪器的研制提供了理论支持。 展开更多
关键词 光谱学 特征波长 区间蒙特卡罗偏最小二乘回归 无信息变量消除 荧光光谱 藻类
原文传递
基于高光谱成像分析的冬枣微观损伤识别 被引量:18
11
作者 魏新华 吴姝 +1 位作者 范晓冬 黄嘉宝 《农业机械学报》 EI CAS CSCD 北大核心 2015年第3期242-246,共5页
为减少微观损伤引起的储藏腐烂损失,延长冬枣的储藏期,提高冬枣的储藏效益,以山东沾化冬枣为研究对象,利用高光谱成像系统采集轻微损伤发生不到1 h的冬枣损伤部位的高光谱图像,得到波长在871~1 766 nm范围内的256幅高光谱分量图像。结... 为减少微观损伤引起的储藏腐烂损失,延长冬枣的储藏期,提高冬枣的储藏效益,以山东沾化冬枣为研究对象,利用高光谱成像系统采集轻微损伤发生不到1 h的冬枣损伤部位的高光谱图像,得到波长在871~1 766 nm范围内的256幅高光谱分量图像。结合无信息变量消除法及相关系数法进行特征波长筛选,剔除不敏感波段,选取了944、1 035、1 187、1 376 nm 4个特征波长。对以上4个特征波长对应的分量图像进行主成分分析,选择第1主成分图像作为待分割图像,对其进行灰度变换等图像预处理,并运用自适应阈值分割法对其进行图像分割,实现了轻微损伤区域的有效识别。对100个轻微损伤冬枣样本的识别试验结果表明,所提方法的正确识别率为98%。 展开更多
关键词 冬枣 损伤检测 高光谱成像 无信息变量消除 相关系数
下载PDF
基于可见-近红外光谱变量选择的土壤全氮含量估测研究 被引量:17
12
作者 杨梅花 赵小敏 《中国农业科学》 CAS CSCD 北大核心 2014年第12期2374-2383,共10页
【目的】变量选择是可见光-近红外光谱研究至关重要的步骤,通过分析可见光-近红外光谱不同特征的选择方法筛选出土壤全氮敏感波段,建立基于敏感波段的土壤全氮最佳预测模型,为土壤全氮的快速定量估算提供重要的理论指导依据。【方法】... 【目的】变量选择是可见光-近红外光谱研究至关重要的步骤,通过分析可见光-近红外光谱不同特征的选择方法筛选出土壤全氮敏感波段,建立基于敏感波段的土壤全氮最佳预测模型,为土壤全氮的快速定量估算提供重要的理论指导依据。【方法】在红壤典型地区江西省吉安县采集代表性土壤样品120个,对可见光-近红外光谱采用主成分分析(PCA)、无信息变量消除(UVE)和无信息变量消除后结合连续投影(UVE-SPA)3种变量特征选择方法,建立基于不同变量选择的偏最小二乘回归(PLSR)模型、最小二乘-支持向量机(LS-SVM)、反向传播神经网络(BPNN)和遗传算法优化的反向传播神经网络(GA-BPNN)模型,从模型对预测集的预测精度分析不同变量选择方法对不同土壤全氮定量估算模型的差异。【结果】经UVE算法筛选后,光谱变量从200个减少至59个,其中可见光波段处10个,其余在近红外光谱的合频区和一倍频区,信息量丰富;进一步采用SPA进行变量选择,得到共线性最小的5个有效波长,分别为820、940、1 040、1 060和1 990nm;基于UVE变量选择建立的PLSR、BPNN、GA-BPNN和LS-SVM模型,经不同的土壤全氮的数据检验,预测精度最高的为LS-SVM,决定系数(R2)、均方根误差(RMSEp)和相对偏差(RPD)分别为0.7492、0.2921和1.8904;基于UVE-SPA特征选择建立的PLSR、BPNN、GA-BPNN和LS-SVM模型对预测集的验证表明,UVE-SPA提取的特征波段建立的LS-SVM建立模型预测效果最好,其建立的LS-SVM定量估算模型预测集的决定系数R2为0.7945,均方根误差RMSEp为0.2499相对偏差RPD为2.0009,模型稳定;基于PCA提取的7个主成分建立的LS-SVM、BPNN和GA-PBNN模型预测性能差,不能用于定量估算土壤全氮。对比相同的变量建立的GA-BPNN和BPNN,GA-BPNN预测性能比BPNN高。【结论】UVE-SPA变量选择方法结合LS-SVM模型能用来估算土壤中的全氮含量,同时UVE-SPA是一种有效的土壤� 展开更多
关键词 土壤全氮 无信息变量消除(UVE) 连续投影(SPA) 偏最小二乘回归(PLSR) 最小二乘支持向量机(LS-SVM) 遗传算法优化的反向传播神经网络(GA-BPNN)
下载PDF
小麦籽粒蛋白质光谱特征变量筛选方法研究 被引量:16
13
作者 李栓明 郭银巧 +5 位作者 王克如 谢瑞芝 戴建国 肖春华 李静 李少昆 《中国农业科学》 CAS CSCD 北大核心 2015年第12期2317-2326,共10页
【目的】筛选整粒小麦籽粒蛋白质的近红外特征光谱波段并建立优化模型,可实现快速、无损测定整粒小麦籽粒蛋白质含量,为田间便携式小麦籽粒蛋白质含量速测仪设计提供依据。【方法】2012—2013年以蛋白质含量有明显差异的8个冬小麦品种... 【目的】筛选整粒小麦籽粒蛋白质的近红外特征光谱波段并建立优化模型,可实现快速、无损测定整粒小麦籽粒蛋白质含量,为田间便携式小麦籽粒蛋白质含量速测仪设计提供依据。【方法】2012—2013年以蛋白质含量有明显差异的8个冬小麦品种为试验品种,设置3个施氮量和2个灌溉量共6个处理,建立丰富的样本类型,共采集176个小麦籽粒光谱数据;将ASD Field Spec Pro光谱仪采集到的基于全反射下垫面的整粒小麦籽粒反射光谱通过公式A=log(1/R)转换为吸收光谱,对吸收光谱采用S-G平滑、多元散射校正和基线校正等方法进行预处理,以消除背景噪声,然后采用交叉验证偏最小二乘回归方法进行特征波段压缩;分析比较无信息变量剔除法(UVE)结合交叉验证偏最小二乘回归、连续投影算法(SPA)结合交叉验证偏最小二乘回归、UVE与SPA组合后结合交叉验证偏最小二乘回归、UVE与SPA组合后结合多元线性回归(MLR)及UVE与SPA组合后结合逐步多元线性回归(SMLR)等多种特征光谱筛选方法选出的蛋白质特征波段的优劣,并与凯氏定氮法测定的小麦籽粒蛋白质含量进行回归分析,构建并优选小麦籽粒蛋白质最佳预测模型。【结果】利用无信息变量剔除(UVE)方法可将与小麦籽粒蛋白质含量无关的信息变量剔除,把籽粒的原始光谱由1 621个波段压缩至717个,在保留了蛋白质信息的同时,实现了特征谱段的初次优选;对逐步多元线性回归(SMLR)、连续投影算法(SPA)、连续投影算法(SPA)+逐步多元线性回归(SMLR)及连续投影算法(SPA)+偏最小二乘回归(PLS)+交叉验证(CV)等特征波段优选算法比较发现,不同的方法获得的特征谱段有差异,构建的模型及精度也明显不同。对经过无信息变量剔除(UVE)法筛选光谱特征谱段,利用SPA消除光谱矩阵中波段共线性影响,再利用SMLR筛选出小麦籽粒蛋白质信息贡献最大的15个特� 展开更多
关键词 特征光谱 小麦 籽粒蛋白质 无信息变量剔除 连续投影算法 模型构建
下载PDF
基于PLS-LDA和拉曼光谱快速定性识别食用植物油 被引量:16
14
作者 吴静珠 石瑞杰 +2 位作者 陈岩 刘翠玲 徐云 《食品工业科技》 CAS CSCD 北大核心 2014年第6期55-58,共4页
以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变... 以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变量消除法筛选波长变量,不但有效减少了波长点数,降低了建模运算量,而且提高了单一种类食用油的识别率,使得总体识别率均高于90%,并在此基础上进一步提出了采用PLS-LDA进行多种类食用油识别的检测流程。实验结果表明PLS-LDA在食用油定性识别检测中具有较好的应用前景和可行性,该方法也可为定性检测食品及农产品品质提供借鉴。 展开更多
关键词 偏最小二乘线性判别分析法 拉曼光谱 食用植物油 蒙特卡洛无信息变量消除法
下载PDF
山茶油中油酸和亚油酸近红外光谱分析模型 被引量:15
15
作者 郝勇 吴文辉 +1 位作者 商庆园 耿佩 《光学学报》 EI CAS CSCD 北大核心 2019年第9期381-386,共6页
将近红外光谱分析技术结合化学计量学方法用于山茶油混合油品中油酸和亚油酸含量的快速检测。配制了76种山茶油混合油样本用于近红外光谱的采集,将不同的光谱预处理方法用于光谱有效信息的提取;将蒙特卡罗无信息变量消除(MCUVE)和变量... 将近红外光谱分析技术结合化学计量学方法用于山茶油混合油品中油酸和亚油酸含量的快速检测。配制了76种山茶油混合油样本用于近红外光谱的采集,将不同的光谱预处理方法用于光谱有效信息的提取;将蒙特卡罗无信息变量消除(MCUVE)和变量组合集群分析(VCPA)方法用于建模变量的选择;将偏最小二乘回归(PLSR)用于脂肪酸含量定量分析模型的构建。结果表明:经NWD1st-MSC预处理后,两种脂肪酸的近红外光谱的较正均得到最好的结果;采用基于VCPA的变量优选方法极大地改善了模型精度,实现了建模变量数量的有效压缩。对于油酸模型,建模变量数量由1501减少为7,交叉验证均方根误差和校正相关系数分别为1.107和0.984,预测均方根误差和测试集的预测相关系数分别为1.178和0.981;对于亚油酸模型,建模变量数量由1501减少为8,交叉验证均方根误差和校正相关系数分别为0.089和0.987,预测均方根误差和测试集的预测相关系数分别为0.105和0.982。近红外光谱分析技术结合NWD1st-MSC-VCPA-PLSR的方法为山茶油混合油品中脂肪酸含量的测定提供了一种快速简单的分析方法。 展开更多
关键词 光谱学 近红外光谱 脂肪酸 变量筛选 蒙特卡罗无信息变量消除 变量组合集群分析
原文传递
无信息变量消除法在近红外光谱测定的应用 被引量:14
16
作者 陈斌 陈蛋 《光谱仪器与分析》 2005年第4期26-30,共5页
本文通过讨论了无信息变量消除法(uninformative variables elimination,UVE)的原理,并用此算法对玉米的近红外光谱数据进行波长变量选择,再使用偏最小二乘法(partial least squares,PLS)建立模型。结果表明,与使用全谱数据建立的模型... 本文通过讨论了无信息变量消除法(uninformative variables elimination,UVE)的原理,并用此算法对玉米的近红外光谱数据进行波长变量选择,再使用偏最小二乘法(partial least squares,PLS)建立模型。结果表明,与使用全谱数据建立的模型相比较,筛选变量后建立的校正模型不仅简化了,而且增强了预测能力。 展开更多
关键词 无信息变量消除法 偏最小二乘法 变量筛选 玉米
下载PDF
不同品种苹果糖度近红外光谱在线检测通用模型研究 被引量:13
17
作者 刘燕德 徐海 +3 位作者 孙旭东 姜小刚 饶宇 张雨 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第3期922-928,共7页
由于果实内部细胞结构、组成成分和光学传输特性的不同,品种差异会对近红外建模分析果实内部品质时产生较大的影响,以致原有模型无法高精度地预测果实品质参数。探讨开发不同品种近红外通用模型用于在线检测苹果内部品质的可行性。采用... 由于果实内部细胞结构、组成成分和光学传输特性的不同,品种差异会对近红外建模分析果实内部品质时产生较大的影响,以致原有模型无法高精度地预测果实品质参数。探讨开发不同品种近红外通用模型用于在线检测苹果内部品质的可行性。采用水果动态在线分选设备,设置运行参数为:积分时间100 ms,运动速度5 s^-1,采集包括冰糖心,红富士及水晶富士三个品种苹果的近红外漫透射光谱。分析了三个品种近红外漫透射光谱的响应特征,其光谱曲线走势基本一致,在650, 709和810 nm附近存在突出吸收峰,而在670, 750与830 nm附近存在波谷,其差异主要表现为光谱吸收强度的差异。采用多元散射校正, Savitzky-Golay卷积平滑及归一化处理方法,减少了不同品种引起的光谱信息差异。混合三个品种各校正集样本,采用偏最小二乘回归算法建立了不同品种糖度的通用模型,并利用无信息变量消除法(UVE)对建模变量进行筛选,最终得到的有效变量个数为155。所建立的UVE-PLS模型对验证集的决定系数,均方根误差以及残留预测偏差分别为0.80, 0.61%与2.21。在UVE筛选变量的基础上,采用连续投影算法再对建模变量进行选择,最终选出的变量个数为22。采用多元线性回归(MLR)方法建立了简化后的通用模型,对验证集的决定系数与均方根误差分别为0.78与0.64%。测试集用于评估最佳的不同品种糖度通用模型的实际性能,模型对每个品种测试集的潜变量数,决定系数与均方根误差分别为6~10, 0.77~0.79与0.45~0.75%。结果表明水果动态在线分选设备对不同品种苹果内部品质检测的潜力。通过建立通用模型,扩大了单一品种模型的预测范围,提高了模型在不同品种间的预测稳健性。并且采用合适的变量选择方法能够减少模型变量个数,降低模型复杂程度,并最终提高模型速率。开发不同品种水果内部品质通 展开更多
关键词 在线检测 近红外光谱 通用模型 偏最小二乘法 无信息变量消除 苹果 糖度
下载PDF
基于近红外光谱的润滑油中含水量T-S模糊辨识 被引量:12
18
作者 陈彬 刘阁 《光子学报》 EI CAS CSCD 北大核心 2014年第2期164-168,共5页
油中含水量近红外光谱具有复杂性、非线性和难以用明确数学模型表达的特点.利用无信息变量消除法提取有效波长,采用模糊C均值聚类算法得出输入空间的划分和聚类中心,结合递推最小二乘法辨识后件参量,建立了润滑油的近红外光谱与含水量的... 油中含水量近红外光谱具有复杂性、非线性和难以用明确数学模型表达的特点.利用无信息变量消除法提取有效波长,采用模糊C均值聚类算法得出输入空间的划分和聚类中心,结合递推最小二乘法辨识后件参量,建立了润滑油的近红外光谱与含水量的Takagi-Sugeno模糊模型.将该辨识算法与偏振最小二乘法模型进行比较,并对实测数据进行了验证.结果显示:经无信息变量消除法提取34个特征波长建立的Takagi-Sugeno模型能够精确地反映出润滑油光谱数据与含水量的关系,其对验证集样本进行预测的相关系数和均方根误差分别为0.964 6和1.531 2×10-4,获得了满意的预测准确度.实验结果验证了应用光谱技术检测油中含水量的可行性,同时也为油中其他污染物的在线监测提供了新方法. 展开更多
关键词 近红外光谱 油中含水量 无信息变量消除法 T—S模型
下载PDF
基于MC-UVE、GA算法及因子分析对葡萄酒酒精度近红外定量模型的优化研究 被引量:12
19
作者 王怡淼 朱金林 +3 位作者 张慧 赵建新 顾小红 朱华新 《发光学报》 EI CAS CSCD 北大核心 2018年第9期1310-1316,共7页
对葡萄酒酒精度偏最小二乘(Partial least squares,PLS)回归模型进行优化研究。使用近红外光谱仪采集葡萄酒样本的光谱数据,用于建立酒精度定量模型,实现在线快速检测。通过蒙特卡罗无信息变量消除(Monte Carlo uninformative variable ... 对葡萄酒酒精度偏最小二乘(Partial least squares,PLS)回归模型进行优化研究。使用近红外光谱仪采集葡萄酒样本的光谱数据,用于建立酒精度定量模型,实现在线快速检测。通过蒙特卡罗无信息变量消除(Monte Carlo uninformative variable elimination,MC-UVE)和遗传算法(Genetic algorithm,GA)进行变量选择,基于被选择的变量分别进行PLS和因子分析(Factor analysis,FA),建立回归模型。结果表明,MC-UVE-GA-FAR模型预测集相关系数(R2)为0.946,预测均方根误差(Root mean square error of prediction,RMSEP)为0.215,效果优于MC-UVE-GA-PLS模型。与基于全范围光谱所建PLS回归模型相比,模型效果有所提升,而且模型所选变量个数仅为6,极大地简化了模型。MC-UVE和GA算法与FA分析结合可以实现模型的优化。 展开更多
关键词 近红外光谱 葡萄酒 遗传算法 蒙特卡罗无信息变量消除 因子分析
下载PDF
基于可见-近红外光谱技术的润滑油酸值无损检测方法研究 被引量:11
20
作者 张瑜 吴迪 +2 位作者 何勇 谈黎虹 蒋璐璐 《红外》 CAS 2011年第12期39-44,共6页
研究了基于可见-近红外光谱技术的润滑油酸值无损检测方法。获得了润滑油在475~975 nm范围内的可见-近红外光谱。采用最小二乘支持向量机(LS-SVM)建立可见-近红外光谱检测模型,并通过将无信息变量消除算法(UVE)与连续投影算法(SPA)相... 研究了基于可见-近红外光谱技术的润滑油酸值无损检测方法。获得了润滑油在475~975 nm范围内的可见-近红外光谱。采用最小二乘支持向量机(LS-SVM)建立可见-近红外光谱检测模型,并通过将无信息变量消除算法(UVE)与连续投影算法(SPA)相结合进行光谱有效波长选取。通过UVE-SPA法进行变量选择计算,最终将原始光谱所包含的500个光谱变量减少到了8个(分别为489 nm、553 nm、591 nm、874nm、893 nm、910 nm、935 nm和951 nm)。基于这8个变量建立的LS-SVM模型获得了预测集确定系数为0.9546、误差均方根为0.0081和剩余预测残差为4.5663的预测结果,说明可见-近红外光谱技术可以用于润滑油酸值无损检测。与酸值测定标准方法相比,该方法具有快速、无损和成本低等优点。同时,UVE-SPA法是一种有效的光谱变量选择方法。 展开更多
关键词 可见-近红外光谱 润滑油 酸值 最小二乘支持向量机 无信息变量消除-连续投影算法(UVE-SPA)
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部