期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
UNIFORM QUASI-DIFFERENTIABILITY OF SEMIGROUP TO NONLINEAR REACTION-DIFFUSION EQUATIONS WITH SUPERCRITI C AL EXPONENT 被引量:1
1
作者 钟延生 孙春友 《Acta Mathematica Scientia》 SCIE CSCD 2017年第2期301-315,共15页
A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect ... A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space. 展开更多
关键词 uniform quasi-differentiability semigroup reaction-diffusion equation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部