Solubility of benzoic acid, terephthalic acid and 2,6-naphthalene dicarboxylic acid in water, acetic acid, N.N-dimethylformamide, N.N-dimethylacetamide, dimethyl sulphoxide and Ar-methyl-2-ketopyrrolidine were measure...Solubility of benzoic acid, terephthalic acid and 2,6-naphthalene dicarboxylic acid in water, acetic acid, N.N-dimethylformamide, N.N-dimethylacetamide, dimethyl sulphoxide and Ar-methyl-2-ketopyrrolidine were measured by dynamic method. The solubilities were calculated by UNIFAC group contribution method, in which new groups, BCCOOH and NCCOOH, were introduced to express the activity coefficients of aromatic acids and new interaction parameters of the new groups were expressed as the function of temperature, which were determined from the experimental data. The new interaction parameters provided good calculated result. The experimental data were also correlated with Wilson and y-h models, and results were compared with present UNIFAC model.展开更多
真实溶剂似导体屏蔽模型(COSMO-RS,Conductor-likescreening model for real solvents)是Klamt等在连续介质溶剂化模式COSMO的基础上,结合统计力学方法发展起来的定量计算溶剂化现象的新方法。本文简单介绍了COSMO-RS的基本原理、概念,...真实溶剂似导体屏蔽模型(COSMO-RS,Conductor-likescreening model for real solvents)是Klamt等在连续介质溶剂化模式COSMO的基础上,结合统计力学方法发展起来的定量计算溶剂化现象的新方法。本文简单介绍了COSMO-RS的基本原理、概念,以及应用该模式的基本步骤。综述了COSMO-RS应用于离子性化合物、聚合物溶液体系、高温高压体系以及预测复杂生物体系的分配系数和药物设计的进展。评述了简化分子表面屏蔽电荷分布计算的COSMOfrag和GC-COSMO(group contribution COSMO)方法,对不同版本的COSMO-RS之间以及其与基团贡献方法的对比研究也作了详细的讨论,并指出了COSMO-RS的不足之处和进一步发展该模式的建议。展开更多
A method to select solvent for extractive distillation is proposed by UNIFAC group contribution. Solventselectivity can be divided into two parts: the partial combinatorial solvent selectivity and the partial residual...A method to select solvent for extractive distillation is proposed by UNIFAC group contribution. Solventselectivity can be divided into two parts: the partial combinatorial solvent selectivity and the partial residual solventselectivity. The properties of partial combinatorial and residual solvent selectivity are demonstrated. In most cases,the partial residual solvent selectivity is predominant. The candidate groups of solvent can be selected by groupinteraction parameter using UNIFAC group interaction parameter table as a guide.展开更多
To get high purity caprolactam is a challenging task in the chemical fiber industry. To date, reports on the prediction of the distribution of caprolactam and its derivative chemicals have been few. In this study, the...To get high purity caprolactam is a challenging task in the chemical fiber industry. To date, reports on the prediction of the distribution of caprolactam and its derivative chemicals have been few. In this study, the extraction of caprolactam with toluene as the extractant and N-methyl caprolactam with benzene and toluene as theextractants has been camed out. By defining new UNIFAC groups and calibrating related interaction parameters, aUNIFAC method was introduced to predict the equilibrium concentration of caprolactam and methyl caprolactam intoluene or benzene extraction processes. The calculated results fit very well With the experimental data. Using theUNIFAC model, the selectivity of extractants can be predicted.展开更多
文摘Solubility of benzoic acid, terephthalic acid and 2,6-naphthalene dicarboxylic acid in water, acetic acid, N.N-dimethylformamide, N.N-dimethylacetamide, dimethyl sulphoxide and Ar-methyl-2-ketopyrrolidine were measured by dynamic method. The solubilities were calculated by UNIFAC group contribution method, in which new groups, BCCOOH and NCCOOH, were introduced to express the activity coefficients of aromatic acids and new interaction parameters of the new groups were expressed as the function of temperature, which were determined from the experimental data. The new interaction parameters provided good calculated result. The experimental data were also correlated with Wilson and y-h models, and results were compared with present UNIFAC model.
文摘真实溶剂似导体屏蔽模型(COSMO-RS,Conductor-likescreening model for real solvents)是Klamt等在连续介质溶剂化模式COSMO的基础上,结合统计力学方法发展起来的定量计算溶剂化现象的新方法。本文简单介绍了COSMO-RS的基本原理、概念,以及应用该模式的基本步骤。综述了COSMO-RS应用于离子性化合物、聚合物溶液体系、高温高压体系以及预测复杂生物体系的分配系数和药物设计的进展。评述了简化分子表面屏蔽电荷分布计算的COSMOfrag和GC-COSMO(group contribution COSMO)方法,对不同版本的COSMO-RS之间以及其与基团贡献方法的对比研究也作了详细的讨论,并指出了COSMO-RS的不足之处和进一步发展该模式的建议。
文摘A method to select solvent for extractive distillation is proposed by UNIFAC group contribution. Solventselectivity can be divided into two parts: the partial combinatorial solvent selectivity and the partial residual solventselectivity. The properties of partial combinatorial and residual solvent selectivity are demonstrated. In most cases,the partial residual solvent selectivity is predominant. The candidate groups of solvent can be selected by groupinteraction parameter using UNIFAC group interaction parameter table as a guide.
基金Supported by the National Natural Science Foundation of China (No.20490200, No.20525622).
文摘To get high purity caprolactam is a challenging task in the chemical fiber industry. To date, reports on the prediction of the distribution of caprolactam and its derivative chemicals have been few. In this study, the extraction of caprolactam with toluene as the extractant and N-methyl caprolactam with benzene and toluene as theextractants has been camed out. By defining new UNIFAC groups and calibrating related interaction parameters, aUNIFAC method was introduced to predict the equilibrium concentration of caprolactam and methyl caprolactam intoluene or benzene extraction processes. The calculated results fit very well With the experimental data. Using theUNIFAC model, the selectivity of extractants can be predicted.