为提高水下蛙人呼吸声识别的准确度,提出一种基于Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)的蛙人呼吸声信号特征匹配方法。计算呼吸声信号之间、信号与环境噪声及舰船辐射噪声的MFCC夹角和MFCC距离并进行匹配比较,以...为提高水下蛙人呼吸声识别的准确度,提出一种基于Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)的蛙人呼吸声信号特征匹配方法。计算呼吸声信号之间、信号与环境噪声及舰船辐射噪声的MFCC夹角和MFCC距离并进行匹配比较,以进行分类识别。某湖试验数据的处理结果表明:蛙人呼吸声与舰船辐射噪声及环境噪声的MFCC参数有着明显的差异,能够对蛙人呼吸声信号与干扰噪声进行区分,证明了基于MFCC特征算法的有效性,对发展港口、码头等近海海域附近的水下蛙人探测声呐和预警系统具有实际意义。展开更多
文摘为提高水下蛙人呼吸声识别的准确度,提出一种基于Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)的蛙人呼吸声信号特征匹配方法。计算呼吸声信号之间、信号与环境噪声及舰船辐射噪声的MFCC夹角和MFCC距离并进行匹配比较,以进行分类识别。某湖试验数据的处理结果表明:蛙人呼吸声与舰船辐射噪声及环境噪声的MFCC参数有着明显的差异,能够对蛙人呼吸声信号与干扰噪声进行区分,证明了基于MFCC特征算法的有效性,对发展港口、码头等近海海域附近的水下蛙人探测声呐和预警系统具有实际意义。
文摘针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗余最大相关(minimum Redundancy and Maximum Relevance,mRMR)相结合的特征选择方法(RF-mRMR),得出综合的特征重要性排序结果 .通过实验得出分类模型所需的最优特征子集,达到降低数据处理复杂度和提高目标分类结果的目的 .为了捕捉到数据中的高阶结构,在联合稀疏表示模型的基础上,使用核函数将线性不可分的特征数据映射到高维核特征空间.为了充分挖掘稀疏重构后包含在残差波段中的有用信息,使用指数平滑公式对具有一定意义的残差信息进行再利用,最后由核特征空间下的最小误差准则判定目标的类别.应用本文提出的方法对4类目标的海试数据进行识别,结果表明,相较于其他7种对比算法,本文提出的改进方法具有更好的分类性能,而且大多数情况下,本文提出的算法在双基地声呐模式下具有比单基地声呐更高的识别准确率和更低的虚警率.