We consider a nonlinear hyperbolic system of two conservation laws which arises in ideal magnetohydrodynamics and includes second-order terms accounting for magnetic resistivity and Hall effect. We show that the initi...We consider a nonlinear hyperbolic system of two conservation laws which arises in ideal magnetohydrodynamics and includes second-order terms accounting for magnetic resistivity and Hall effect. We show that the initial value problem for this model may lead to solutions exhibiting complex wave structures, including undercompressive nonclassical shock waves. We investigate numerically the subtle competition that takes place between the hyperbolic, diffusive, and dispersive parts of the system. Following Abeyratne, Knowles, LeFloch, and Truskinovsky, who studied similar questions arising in fluid and solid flows, we determine the associated kinetic function which characterizes the dynamics of undereompressive shocks driven by resistivity and Hall effect. To this end, we design a new class of "schemes with eontroled dissipation", following recent work by LeFloch and Mohammadian. It is now recognized that the equivalent equation associated with a scheme provides a guideline to design schemes that capture physically relevant, nonclassical shocks. We propose a new class of schemes based on high-order entropy conservative, finite differences for the hyperbolic flux, and high-order central differences for the resistivity and Hall terms. These schemes are tested for several regimes of (co-planar or not) initial data and parameter values, and allow us to analyze the properties of nonclassical shocks and establish the existence of monotone kinetic functions in magnetohydrodynamics.展开更多
The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are ...The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are taken into account. A typical example of nonconvex con-stitutive equation for fluids is Van der Waals' equation. The first order terms of these partialdifferential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class ofnonconvex equations of state, an existence theorem of traveling waves solutions with arbitrarylarge amplitude is established here. The authors distinguish between classical (compressive) andnonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-ties, and are characterized by the so-called kinetic relation, whose properties are investigatedin this paper.展开更多
基金The first author (PLF) was partially supported by the Centre National de la Recherche Scientifique (CNRS) the Agence Nationale de la Recherche (ANR)
文摘We consider a nonlinear hyperbolic system of two conservation laws which arises in ideal magnetohydrodynamics and includes second-order terms accounting for magnetic resistivity and Hall effect. We show that the initial value problem for this model may lead to solutions exhibiting complex wave structures, including undercompressive nonclassical shock waves. We investigate numerically the subtle competition that takes place between the hyperbolic, diffusive, and dispersive parts of the system. Following Abeyratne, Knowles, LeFloch, and Truskinovsky, who studied similar questions arising in fluid and solid flows, we determine the associated kinetic function which characterizes the dynamics of undereompressive shocks driven by resistivity and Hall effect. To this end, we design a new class of "schemes with eontroled dissipation", following recent work by LeFloch and Mohammadian. It is now recognized that the equivalent equation associated with a scheme provides a guideline to design schemes that capture physically relevant, nonclassical shocks. We propose a new class of schemes based on high-order entropy conservative, finite differences for the hyperbolic flux, and high-order central differences for the resistivity and Hall terms. These schemes are tested for several regimes of (co-planar or not) initial data and parameter values, and allow us to analyze the properties of nonclassical shocks and establish the existence of monotone kinetic functions in magnetohydrodynamics.
文摘The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are taken into account. A typical example of nonconvex con-stitutive equation for fluids is Van der Waals' equation. The first order terms of these partialdifferential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class ofnonconvex equations of state, an existence theorem of traveling waves solutions with arbitrarylarge amplitude is established here. The authors distinguish between classical (compressive) andnonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-ties, and are characterized by the so-called kinetic relation, whose properties are investigatedin this paper.