This paper presents a novel five degrees of freedom (DOF) two-wheeled robotic machine (TWRM) that delivers solutions for both industrial and service robotic applications by enlarging the vehicle′s workspace and incre...This paper presents a novel five degrees of freedom (DOF) two-wheeled robotic machine (TWRM) that delivers solutions for both industrial and service robotic applications by enlarging the vehicle′s workspace and increasing its flexibility. Designing a two-wheeled robot with five degrees of freedom creates a high challenge for the control, therefore the modelling and design of such robot should be precise with a uniform distribution of mass over the robot and the actuators. By employing the Lagrangian modelling approach, the TWRM′s mathematical model is derived and simulated in Matlab/Simulink?. For stabilizing the system′s highly nonlinear model, two control approaches were developed and implemented: proportional-integral-derivative (PID) and fuzzy logic control (FLC) strategies. Considering multiple scenarios with different initial conditions, the proposed control strategies′ performance has been assessed.展开更多
A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular,...A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular, the assumption for non-zero diagonal entries of the input gain matrix of the plant is relaxed. In other words, the control effect of one actuator can propagate from a subgroup of canonical state equations to the rest of equations in an indirect sense. The asymptotic stability of the proposed AFSM control method is proved using a Lyapunov-based methodology. The effectiveness of the proposed method for the case of under-actuated systems is investigated in the presence of plant uncertainties and disturbances, through simulation studies.展开更多
We study the problem of dynamically controlling the shape of a cable that is fixed at one end and attached to an actuated robot at another end. This problem is relevant to unmanned aerial vehicles (UAVs) tethered to a...We study the problem of dynamically controlling the shape of a cable that is fixed at one end and attached to an actuated robot at another end. This problem is relevant to unmanned aerial vehicles (UAVs) tethered to a base. While rotorcrafts, such as quadcopters, are agile and versatile in their applications and have been widely used in scientific, industrial and military applications, one of the biggest challenges with such UAVs is their limited battery life that make the flight time for a typical UAVs limited to twenty to thirty minutes for most practical purposes. A solution to this problem lies in the use of cables that tether the UAV to a power outlet for constant power supply. However, the cable needs to be controlled effectively in order to avoid obstacles or other UAVs. In this paper, we develop methods for controlling the shape of a cable using actuation at one end. We propose a discrete model for the spatial cable and derive the equations governing the cable dynamics for both force controlled system and position controlled system. We design a controller to control the shape of the cable to attain the desired shape and perform simulations under different conditions. Finally, we propose a quasi-static model for the spatial cable and discuss the stability of this system and the proposed controller.展开更多
This study aims to optimize the geometrical parameters of an under-actuated mechanical finger by conducting a theoretical analysis of these parameters. The finger is actuated by a flexion tendon and an extension tendo...This study aims to optimize the geometrical parameters of an under-actuated mechanical finger by conducting a theoretical analysis of these parameters. The finger is actuated by a flexion tendon and an extension tendon. The considered parameters are the tendon guide positions with respect to the hinges. By applying such an optimization, the correct kinematical and dynamical behavior of the closing cycle of the finger can be obtained. The results of this study are useful for avoiding the snap- through and the single joint hyperflexion, which are the two breakdowns most frequently observed during experi- mentation on prototypes. Diagrams are established to identify the optimum values for the tendon guides position of a finger with specified dimensions. The findings of this study can serve as guide for future finger design.展开更多
Periodic motion planning for an under-actuated system is rather difficult due to differential dynamic constraints imposed by passive dynamics, and it becomes more difficult for a system with higher underactuation degr...Periodic motion planning for an under-actuated system is rather difficult due to differential dynamic constraints imposed by passive dynamics, and it becomes more difficult for a system with higher underactuation degree, that is with a higher difference between the number of degrees of freedom and the number of independent control inputs. However, from another point of view, these constraints also mean some relation between state variables and could be used in the motion planning.We consider a double rotary pendulum, which has an underactuation degree 2. A novel periodic motion planning is presented based on an optimization search. A necessary condition for existence of the whole periodic trajectory is given because of the higher underactuation degree of the system. Moreover this condition is given to make virtual holonomic constraint(VHC) based control design feasible. Therefore, an initial guess for the optimization of planning a feasible periodic motion is based on this necessary condition. Then, VHCs are used for the system transformation and transverse linearization is used to design a static state feedback controller with periodic matrix function gain. The controller gain is found through another optimization procedure. The effectiveness of initial guess and performance of the closed-loop system are illustrated through numerical simulations.展开更多
文摘This paper presents a novel five degrees of freedom (DOF) two-wheeled robotic machine (TWRM) that delivers solutions for both industrial and service robotic applications by enlarging the vehicle′s workspace and increasing its flexibility. Designing a two-wheeled robot with five degrees of freedom creates a high challenge for the control, therefore the modelling and design of such robot should be precise with a uniform distribution of mass over the robot and the actuators. By employing the Lagrangian modelling approach, the TWRM′s mathematical model is derived and simulated in Matlab/Simulink?. For stabilizing the system′s highly nonlinear model, two control approaches were developed and implemented: proportional-integral-derivative (PID) and fuzzy logic control (FLC) strategies. Considering multiple scenarios with different initial conditions, the proposed control strategies′ performance has been assessed.
文摘A new extension of the conventional adaptive fuzzy sliding mode control(AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output(MIMO) systems, is presented. In particular, the assumption for non-zero diagonal entries of the input gain matrix of the plant is relaxed. In other words, the control effect of one actuator can propagate from a subgroup of canonical state equations to the rest of equations in an indirect sense. The asymptotic stability of the proposed AFSM control method is proved using a Lyapunov-based methodology. The effectiveness of the proposed method for the case of under-actuated systems is investigated in the presence of plant uncertainties and disturbances, through simulation studies.
文摘We study the problem of dynamically controlling the shape of a cable that is fixed at one end and attached to an actuated robot at another end. This problem is relevant to unmanned aerial vehicles (UAVs) tethered to a base. While rotorcrafts, such as quadcopters, are agile and versatile in their applications and have been widely used in scientific, industrial and military applications, one of the biggest challenges with such UAVs is their limited battery life that make the flight time for a typical UAVs limited to twenty to thirty minutes for most practical purposes. A solution to this problem lies in the use of cables that tether the UAV to a power outlet for constant power supply. However, the cable needs to be controlled effectively in order to avoid obstacles or other UAVs. In this paper, we develop methods for controlling the shape of a cable using actuation at one end. We propose a discrete model for the spatial cable and derive the equations governing the cable dynamics for both force controlled system and position controlled system. We design a controller to control the shape of the cable to attain the desired shape and perform simulations under different conditions. Finally, we propose a quasi-static model for the spatial cable and discuss the stability of this system and the proposed controller.
文摘This study aims to optimize the geometrical parameters of an under-actuated mechanical finger by conducting a theoretical analysis of these parameters. The finger is actuated by a flexion tendon and an extension tendon. The considered parameters are the tendon guide positions with respect to the hinges. By applying such an optimization, the correct kinematical and dynamical behavior of the closing cycle of the finger can be obtained. The results of this study are useful for avoiding the snap- through and the single joint hyperflexion, which are the two breakdowns most frequently observed during experi- mentation on prototypes. Diagrams are established to identify the optimum values for the tendon guides position of a finger with specified dimensions. The findings of this study can serve as guide for future finger design.
基金supported by China Scholarship Council (201504980073) for Zeguo Wang to visit Umea University
文摘Periodic motion planning for an under-actuated system is rather difficult due to differential dynamic constraints imposed by passive dynamics, and it becomes more difficult for a system with higher underactuation degree, that is with a higher difference between the number of degrees of freedom and the number of independent control inputs. However, from another point of view, these constraints also mean some relation between state variables and could be used in the motion planning.We consider a double rotary pendulum, which has an underactuation degree 2. A novel periodic motion planning is presented based on an optimization search. A necessary condition for existence of the whole periodic trajectory is given because of the higher underactuation degree of the system. Moreover this condition is given to make virtual holonomic constraint(VHC) based control design feasible. Therefore, an initial guess for the optimization of planning a feasible periodic motion is based on this necessary condition. Then, VHCs are used for the system transformation and transverse linearization is used to design a static state feedback controller with periodic matrix function gain. The controller gain is found through another optimization procedure. The effectiveness of initial guess and performance of the closed-loop system are illustrated through numerical simulations.