期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
不确定大数据流分类的决策树模型构建仿真
1
作者 杨知玲 谭树杰 《计算机仿真》 2024年第5期532-535,542,共5页
在不确定大数据流分类过程中,受噪声和孤立点的干扰,导致处理效果和分类精度无法达到预期要求。为解决上述问题,提出一种基于决策树模型的不确定大数据流分类算法。通过采用在线字典学习算法,对不确定大数据流去噪处理,消除噪声对分类... 在不确定大数据流分类过程中,受噪声和孤立点的干扰,导致处理效果和分类精度无法达到预期要求。为解决上述问题,提出一种基于决策树模型的不确定大数据流分类算法。通过采用在线字典学习算法,对不确定大数据流去噪处理,消除噪声对分类过程产生的干扰。构建决策树,在剪枝过程中通过特征过滤算法,滤除不确定大数据流中掺杂的孤立点。将去噪后的不确定大数据流,输入决策树模型中,完成分类工作。实验结果表明,所提算法处理后的不确定大数据流振幅明显减小,且分类精度高,具有一定的应用价值。 展开更多
关键词 决策树模型 在线字典学习算法 特征过滤 不确定大数据流 数据分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部