Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optica...Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions.Control of photoionization and thermal processes with the highest precision,inducing local photomodification in sub-100-nm-sized regions has been achieved.State-of-the-art ultrashort laser processing techniques exploit high 0.1–1μm spatial resolution and almost unrestricted three-dimensional structuring capability.Adjustable pulse duration,spatiotemporal chirp,phase front tilt and polarization allow control of photomodification via uniquely wide parameter space.Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second,leading to a fast lab-to-fab transfer.The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput.Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.展开更多
While the concept of focusing usually applies to the spatial domain,it is equally applicable to the time domain.Realtime imaging of temporal focusing of single ultrashort laser pulses is of great significance in explo...While the concept of focusing usually applies to the spatial domain,it is equally applicable to the time domain.Realtime imaging of temporal focusing of single ultrashort laser pulses is of great significance in exploring the physics of the space–time duality and finding diverse applications.The drastic changes in the width and intensity of an ultrashort laser pulse during temporal focusing impose a requirement for femtosecond-level exposure to capture the instantaneous light patterns generated in this exquisite phenomenon.Thus far,established ultrafast imaging techniques either struggle to reach the desired exposure time or require repeatable measurements.We have developed single-shot 10-trillion-frame-per-second compressed ultrafast photography(T-CUP),which passively captures dynamic events with 100-fs frame intervals in a single camera exposure.The synergy between compressed sensing and the Radon transformation empowers T-CUP to significantly reduce the number of projections needed for reconstructing a high-quality three-dimensional spatiotemporal datacube.As the only currently available real-time,passive imaging modality with a femtosecond exposure time,T-CUP was used to record the first-ever movie of nonrepeatable temporal focusing of a single ultrashort laser pulse in a dynamic scattering medium.T-CUP’s unprecedented ability to clearly reveal the complex evolution in the shape,intensity,and width of a temporally focused pulse in a single measurement paves the way for single-shot characterization of ultrashort pulses,experimental investigation of nonlinear light-matter interactions,and real-time wavefront engineering for deep-tissue light focusing.展开更多
A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed devic...A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.展开更多
Linear accelerator-based free-electron lasers(FELs)are the leading source of fully coherent X-rays with ultra-high peak powers and ultrashort pulse lengths.Current X-ray FEL facilities have proved their worth as usefu...Linear accelerator-based free-electron lasers(FELs)are the leading source of fully coherent X-rays with ultra-high peak powers and ultrashort pulse lengths.Current X-ray FEL facilities have proved their worth as useful tools for diverse scientific applications.In this paper,we present an overview of the features and future prospects of X-ray FELs,including the working principles and properties of X-ray FELs,the operational status of different FEL facilities worldwide,the applications supported by such facilities,and the current developments and outlook for X-ray FEL-based research.展开更多
We present a recent progress of the SG-II 5 PW facility, which designed a multi-petawatt ultrashort pulse laser based on optical parametric chirped-pulse amplification(OPCPA). The prior two optical parametric amplifie...We present a recent progress of the SG-II 5 PW facility, which designed a multi-petawatt ultrashort pulse laser based on optical parametric chirped-pulse amplification(OPCPA). The prior two optical parametric amplifiers have been accomplished and chirped pulses with an energy of 49.7 J and a full-width-at-half-maximum(FWHM) spectrum bandwidth of 85 nm have been achieved. In the PW-scale optical parametric amplification(OPA), with the pump pulse that has an energy of 118 J from the second harmonic generation of the SG-II 7 th beam, the pump-to-signal conversion efficiency is up to 41.9%, which to the best of our knowledge is the highest among all of the reported values for OPCPA systems. The compressed pulse is higher than 37 J in 21 fs(1.76 PW), and the focal spot is ~10 μm after the closed-loop corrections by the adaptive optics. Limited by the repetition of the pump laser, the SG-II 5 PW facility operates one shot per hour. It has successfully been employed for high energy physics experiments.展开更多
An asynchronous optical sampling scheme based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF) is experimentally demonstrated. Based on this scheme, 10-GHz input pulse train with 1.8-ps pulse width is su...An asynchronous optical sampling scheme based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF) is experimentally demonstrated. Based on this scheme, 10-GHz input pulse train with 1.8-ps pulse width is successfully sampled in 100-m HNLF. A single pulse at 10 GHz with 2.3-ps pulse width is rebuilt by using a 50-MHz frequency tunable free-running fiber laser as the sampling pulse source (SPS). 40-GHz pulse train is used as the input signal. The rebuilt waveforms, together with the low-jitter eye diagram, are also presented.展开更多
Using molecular dynamics (MD) methods combining with two-step radiation heating model, the mechanisms of ablation and the thermodynamic states at Ni surface under femtosecond laser irradiation are investigated. Simula...Using molecular dynamics (MD) methods combining with two-step radiation heating model, the mechanisms of ablation and the thermodynamic states at Ni surface under femtosecond laser irradiation are investigated. Simulation results show that the main mechanisms of ablation are evaporation and tensile stresses generated inside the target. The velocity of stress wave is predicted to be nearly equal to sound velocity. The rates of ablation at different fluences obtained from simulations are in good agreement with experimental data. Superheating phen omenon is also discovered.展开更多
Objective:Currently,magnetic resonance imaging (MRI) is the most commonly used imaging modality for observing the growth and development of mesenchymal stem cells (MSCs) after in vivo transplantation to treat ost...Objective:Currently,magnetic resonance imaging (MRI) is the most commonly used imaging modality for observing the growth and development of mesenchymal stem cells (MSCs) after in vivo transplantation to treat osteoarthritis (OA).However,it is a challenge to accurately monitor the treatment effects of MSCs in the zone of calcified cartilage (ZCC) with OA.This is especially true in the physiological and biochemical views that are not accurately detected by MRI contrast agents.In contrast,ultrashort time echo (UTE) MRI has been shown to be sensitive to the presence of the ZCC,creating the potential for more effectively observing the repair of the ZCC in OA by MSCs.A special focus is given to the outlook of the use ofUTE MRI to detect repair of the ZCC with OA through MSCs.The limitations of the current techniques for clinical applications and future directions are also discussed.Data Sources:Using the combined keywords:"osteoarthritis","mesenchymal stem cells","calcified cartilage",and "magnetic resonance imaging",the PubMed/MEDLINE literature search was conducted up to June 1,2017.Study Selection:A total of 132 published articles were initially identified citations.Of the 132 articles,48 articles were selected after further detailed review.This study referred to all the important English literature in full.Results:In contrast,UTE MRI has been shown to be sensitive to the presence of the ZCC,creating the potential for more effectively observing the repair of the ZCC in OA by MSCs.Conclusions:The current studies showed that the ZCC could be described in terms of its histomorphology and biochemistry by UTE MRI.We prospected that UTE MRI has been shown the potential for more effectively observing the repair of the ZCC in OA by MSCs in vivo.展开更多
The behavior of population transfcr in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfe...The behavior of population transfcr in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.展开更多
Ultrashort energetic terahertz(THz)pulses have created an exciting new area of research on light interactions with matter.For material studies in small laboratories,widely tunable femtosecond THz pulses with peak fiel...Ultrashort energetic terahertz(THz)pulses have created an exciting new area of research on light interactions with matter.For material studies in small laboratories,widely tunable femtosecond THz pulses with peak field strength close to MV cm-1 are desired.Currently,they can be largely acquired by optical rectification and difference frequency generation in crystals without inversion symmetry.We describe in this paper a novel scheme of THz pulse generation with no frequency tuning gap based on Raman-resonance-enhanced four-wave mixing in centrosymmetric media,particularly diamond.We show that we could generate highly stable,few-cycle pulses with near-Gaussian spatial and temporal profiles and carrier frequency tunable from 5 to>2o THz.They had a stable and controllable carrier-envelop phase and carried~15 nJ energy per pulse at 10 THz(with a peak field strength of~1 MV cm^(-1)at focus)from a O.5-mm-thick diamond.The measured THz pulse characteristics agreed well with theoretical predictions.Other merits of the scheme are discussed,including the possibility of improving the THz output energy to a much higher level.展开更多
A method of multi-beam femtosecond laser irradiation combined with modified HF-HNO3-CH3COOH etching is used for the parallel fabrication of all-silicon piano-concave microlens arrays (MLAs). The laser beam is split ...A method of multi-beam femtosecond laser irradiation combined with modified HF-HNO3-CH3COOH etching is used for the parallel fabrication of all-silicon piano-concave microlens arrays (MLAs). The laser beam is split by a diffractive optical element and focused by a lens to drill microholes parallely on silicon. An HF-HNO3-H2SO4-CH3COOH solution is used to expand and polish laser-ablated microholes to form micro- lenses. Compared with the HF-HNO3-CH3COOH solution, the solution with H2SO4 can effectively reduce the etched surface roughness. The morphologies of MLAs at different laser powers and pulse numbers are observed. The image array formed by the silicon microlenses is also demonstrated.展开更多
This paper presents a method of generating terahertz (THz) coherent transition radiation (CTR) from picosecond ultrashort electron bunches including single and train bunches, which are produced by a photocathode r...This paper presents a method of generating terahertz (THz) coherent transition radiation (CTR) from picosecond ultrashort electron bunches including single and train bunches, which are produced by a photocathode radio frequency gun. The radiation characteristics of THz CTR including formation factor and energy spectrum are analysed in detail. With the help of a 2-dimensional particle-in-cell simulation, the radiation characteristics including power, energy and magnetic field are analysed. The results show that the radiation frequency can be adjusted by tuning the repetition frequency of the train bunch and the energy can be enhanced with the train bunches.展开更多
A method for fabricating deep grating structures on a silicon carbide (SIC) surface by a femtosecond laser and chemical-selective etching is developed. Periodic lines corresponding to laser-induced structure change ...A method for fabricating deep grating structures on a silicon carbide (SIC) surface by a femtosecond laser and chemical-selective etching is developed. Periodic lines corresponding to laser-induced structure change (LISC) are formed by femtosecond laser irradiation, and then the SiC material in the LISC zone is removed by a mixed solution of hydrofluoric acid and nitric acid to form grating grooves. Grating grooves with a high-aspect ratio of approximately 25 are obtained. To obtain a small grating period, femtosecond laser exposure through a phase mask was used to fabricate grating structures with a 1.07 μm period on the surface of the SiC.展开更多
Ultrashort pulses were generated in passively mode-locked Nd:YAC and Nd:CdVO4 lasers pumped by a pulsed laser diode with 10-Hz repetition rate. Stable mode-locked pulse trains were produced with the pulse width of 1...Ultrashort pulses were generated in passively mode-locked Nd:YAC and Nd:CdVO4 lasers pumped by a pulsed laser diode with 10-Hz repetition rate. Stable mode-locked pulse trains were produced with the pulse width of 10 ps. The evolution of the mode-locked pulse was observed in the experiment and was discussed in detail. Comparing the pulse evolutions of Nd:YAG and Nd:GdVO4 lasers, we found that the buildup time of the steady-state mode-locking with semiconductor saturable absorber mirrors (SESAMs) was relevant to the upper-state lifetime and the emission cross-section of the gain medium.展开更多
OBJECTIVE: To evaluate the pain scores and rehabilitation of patientis with cervical spondylotic radiculopathy receiving massage therapy combined with traction and ultrashort wave therapy. METHODS: A total of 84 patie...OBJECTIVE: To evaluate the pain scores and rehabilitation of patientis with cervical spondylotic radiculopathy receiving massage therapy combined with traction and ultrashort wave therapy. METHODS: A total of 84 patients with cervical spondylotic radiculopathy treated in 105 Hospital of People's Liberation Army from June 2014 to June 2017 were included and divided into study group and control group according to different treatment regimens. A total of 42 patients in the study group was treated with cervical traction, ultrashort wave and massage therapy at the same time, whereas the other 42 patients in the control group were only treated with cervical traction and ultrashort wave. Comparison of the clinical efficacy and adverse reactions of the 2 groups was made and the Visual Analogue Scale (VAS) scores before and after treatment were observed to assess the patient's pain. Comparison of rehabilitation in the 2 groups was made by applying the Clinical Assessment Scale for Cervical Spondylosis (CASCS). RESULTS: After comparing the therapeutic effect between the study group and the control group, it showed that the total effective rate (90.48%) in the study group was significantly higher than that in the control group (73.81%), the difference was statistically significant (P < 0.05). By comparing the incidence of adverse reactions in the study group and the control group, results showed that the incidence of adverse reactions such as nausea, palpitations, vomiting, sweating, dizziness and colorless complexion in the study group (9.52%) was significantly lower than that in the control group (21.43%), the difference was statistically significant (P < 0.05). After the treatment, the VAS pain scores of the study group and the control group were both significantly improved (P < 0.05), but the improvement of the patients in the study group was more significantly (P < 0.05), and the difference was statistically significant. After treatment, the CASCS scores of the patients in the study group and the control group were sig展开更多
The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides c...The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides conventional laser technology,photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses.Here,we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength.The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse.Owing to its relatively long wavelength,the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble.Consequently,the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths.This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.展开更多
We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation meas...We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation measurement configuration,without requiring a specific form of the incident pulse function.A rigorous solution of the nonlinear coupled wave equation is obtained in the time domain and expressed in a general analytical form.The global model fully accounts for the nonlinear interaction and propagation effects within nonlinear crystals,which are not captured by the classical local model.To assess the performance of the global model compared to the classic local model,we investigate the autocorrelation signals obtained from both models for different incident pulse waveforms and different full-widthes at half-maximum(FWHMs).When the incident pulse waveform is Lorentzian with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 399.9 fs,while the classic local model predicts an FWHM of 331.4 fs.The difference between the two models is 68.6 fs,corresponding to an error of 17.2%.Similarly,for a sech-type incident pulse with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 343.9 fs,while the local model predicts an FWHM of 308.8 fs.The difference between the two models is 35.1 fs,with an error of 10.2%.We further examine the behavior of the models for Lorentzian pulses with FWHMs of 100 fs,200 fs and 500 fs.The differences between the global and local models are 17.1 fs,68.6 fs and 86.0 fs,respectively,with errors approximately around 17%.These comparative analyses clearly demonstrate the superior accuracy of the global model in intensity autocorrelation modeling.展开更多
Background: The zone of calcified cartilage (ZCC) plays an important role in the pathogenesis of osteoarthritis (OA) but has never been imaged in vivo with magnetic resonance (MR) imaging techniques. We investigated t...Background: The zone of calcified cartilage (ZCC) plays an important role in the pathogenesis of osteoarthritis (OA) but has never been imaged in vivo with magnetic resonance (MR) imaging techniques. We investigated the feasibility of direct imaging of the ZCC in both cadaveric whole knee specimens and in vivo healthy knees using a 3-dimensional ultrashort echo time cones (3D UTE-Cones) sequence on a clinical 3T scanner. Methods: In all, 12 cadaveric knee joints and 10 in vivo healthy were collected. At a 3T MR scanner with an 8-channel knee coil, a fat-saturated 3D dual-echo UTE-Cones sequence was used to image the ZCC, following with a short rectangular pulse excitation and 3D spiral sampling with conical view ordering. The regions of interests (ROIs) were delineated by a blinded observer. Singlecomponent T2* and T2 values were calculated from fat-saturated 3D dual-echo UTE-Cones and a Carr-Purcell-Meiboom-Gill (T2 CPMG) data using a semi-automated MATLAB code. Results: The single-exponential fitting curve of ZCC was accurately obtained with R2 of 0.989. For keen joint samples, the ZCC has a short T2* ranging from 0.62 to 2.55 ms, with the mean ±standard deviation (SD) of 1.49 ±0.66 ms, and with 95% confidence intervals (CI) of 1.20-1.78 ms. For volunteers, the short T2* ranges from 0.93 to 3.52ms, with the mean±SD of 2.09±0.56 ms, and the 95% CI is 1.43 to 2.74ms in ZCC. Conclusions: The high-resolution 3D UTE-Cones sequence might be used to directly image ZCC in the human knee joint on a clinical 3T scanner with a scan time of more than 10 min. Using this non-invasive technique, the T2* relaxation time of the ZCC can be further detected.展开更多
基金support by a project‘ReSoft’(SEN-13/2015)from the Research Council of Lithuaniasupport by JSPS Kakenhi Grant No.15K04637+1 种基金support via ARC Discovery DP120102980Gintas Šlekys for the partnership project with Altechna Ltd on industrial fs-laser fabrication.
文摘Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions.Control of photoionization and thermal processes with the highest precision,inducing local photomodification in sub-100-nm-sized regions has been achieved.State-of-the-art ultrashort laser processing techniques exploit high 0.1–1μm spatial resolution and almost unrestricted three-dimensional structuring capability.Adjustable pulse duration,spatiotemporal chirp,phase front tilt and polarization allow control of photomodification via uniquely wide parameter space.Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second,leading to a fast lab-to-fab transfer.The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput.Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
基金supported in part by National Institutes of Health grants DP1 EB016986(NIH Director’s Pioneer Award)R01 CA186567(NIH Director’s Transformative Research Award).
文摘While the concept of focusing usually applies to the spatial domain,it is equally applicable to the time domain.Realtime imaging of temporal focusing of single ultrashort laser pulses is of great significance in exploring the physics of the space–time duality and finding diverse applications.The drastic changes in the width and intensity of an ultrashort laser pulse during temporal focusing impose a requirement for femtosecond-level exposure to capture the instantaneous light patterns generated in this exquisite phenomenon.Thus far,established ultrafast imaging techniques either struggle to reach the desired exposure time or require repeatable measurements.We have developed single-shot 10-trillion-frame-per-second compressed ultrafast photography(T-CUP),which passively captures dynamic events with 100-fs frame intervals in a single camera exposure.The synergy between compressed sensing and the Radon transformation empowers T-CUP to significantly reduce the number of projections needed for reconstructing a high-quality three-dimensional spatiotemporal datacube.As the only currently available real-time,passive imaging modality with a femtosecond exposure time,T-CUP was used to record the first-ever movie of nonrepeatable temporal focusing of a single ultrashort laser pulse in a dynamic scattering medium.T-CUP’s unprecedented ability to clearly reveal the complex evolution in the shape,intensity,and width of a temporally focused pulse in a single measurement paves the way for single-shot characterization of ultrashort pulses,experimental investigation of nonlinear light-matter interactions,and real-time wavefront engineering for deep-tissue light focusing.
基金The authors acknowledge the support of the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU5096/98E).
文摘A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.
基金This work was supported by the National Key Research and Development Program of China(2018YFE0103100,2016YFA0401900)the National Natural Science Foundation of China(11935020,11775293)The SXFEL and SHINE projects are supported by the Chinese Central Government and the Shanghai Government.
文摘Linear accelerator-based free-electron lasers(FELs)are the leading source of fully coherent X-rays with ultra-high peak powers and ultrashort pulse lengths.Current X-ray FEL facilities have proved their worth as useful tools for diverse scientific applications.In this paper,we present an overview of the features and future prospects of X-ray FELs,including the working principles and properties of X-ray FELs,the operational status of different FEL facilities worldwide,the applications supported by such facilities,and the current developments and outlook for X-ray FEL-based research.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11304332,11704392,and 61705245)the Key Projects of International Cooperation in Chinese Academy of Sciences
文摘We present a recent progress of the SG-II 5 PW facility, which designed a multi-petawatt ultrashort pulse laser based on optical parametric chirped-pulse amplification(OPCPA). The prior two optical parametric amplifiers have been accomplished and chirped pulses with an energy of 49.7 J and a full-width-at-half-maximum(FWHM) spectrum bandwidth of 85 nm have been achieved. In the PW-scale optical parametric amplification(OPA), with the pump pulse that has an energy of 118 J from the second harmonic generation of the SG-II 7 th beam, the pump-to-signal conversion efficiency is up to 41.9%, which to the best of our knowledge is the highest among all of the reported values for OPCPA systems. The compressed pulse is higher than 37 J in 21 fs(1.76 PW), and the focal spot is ~10 μm after the closed-loop corrections by the adaptive optics. Limited by the repetition of the pump laser, the SG-II 5 PW facility operates one shot per hour. It has successfully been employed for high energy physics experiments.
基金supported by the project of the Vital Instrument Research of CAS (No. YZ200759)and the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘An asynchronous optical sampling scheme based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF) is experimentally demonstrated. Based on this scheme, 10-GHz input pulse train with 1.8-ps pulse width is successfully sampled in 100-m HNLF. A single pulse at 10 GHz with 2.3-ps pulse width is rebuilt by using a 50-MHz frequency tunable free-running fiber laser as the sampling pulse source (SPS). 40-GHz pulse train is used as the input signal. The rebuilt waveforms, together with the low-jitter eye diagram, are also presented.
文摘Using molecular dynamics (MD) methods combining with two-step radiation heating model, the mechanisms of ablation and the thermodynamic states at Ni surface under femtosecond laser irradiation are investigated. Simulation results show that the main mechanisms of ablation are evaporation and tensile stresses generated inside the target. The velocity of stress wave is predicted to be nearly equal to sound velocity. The rates of ablation at different fluences obtained from simulations are in good agreement with experimental data. Superheating phen omenon is also discovered.
文摘Objective:Currently,magnetic resonance imaging (MRI) is the most commonly used imaging modality for observing the growth and development of mesenchymal stem cells (MSCs) after in vivo transplantation to treat osteoarthritis (OA).However,it is a challenge to accurately monitor the treatment effects of MSCs in the zone of calcified cartilage (ZCC) with OA.This is especially true in the physiological and biochemical views that are not accurately detected by MRI contrast agents.In contrast,ultrashort time echo (UTE) MRI has been shown to be sensitive to the presence of the ZCC,creating the potential for more effectively observing the repair of the ZCC in OA by MSCs.A special focus is given to the outlook of the use ofUTE MRI to detect repair of the ZCC with OA through MSCs.The limitations of the current techniques for clinical applications and future directions are also discussed.Data Sources:Using the combined keywords:"osteoarthritis","mesenchymal stem cells","calcified cartilage",and "magnetic resonance imaging",the PubMed/MEDLINE literature search was conducted up to June 1,2017.Study Selection:A total of 132 published articles were initially identified citations.Of the 132 articles,48 articles were selected after further detailed review.This study referred to all the important English literature in full.Results:In contrast,UTE MRI has been shown to be sensitive to the presence of the ZCC,creating the potential for more effectively observing the repair of the ZCC in OA by MSCs.Conclusions:The current studies showed that the ZCC could be described in terms of its histomorphology and biochemistry by UTE MRI.We prospected that UTE MRI has been shown the potential for more effectively observing the repair of the ZCC in OA by MSCs in vivo.
基金The work was supported by the National Natural Sci-ence Foundation of China (No. 10234030 and 60478002)and the Natural Science Foundation of Shanghai (No.04JC14036 and 03ZR14102)
文摘The behavior of population transfcr in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.
基金This work was supported by the National Natural Science Foundation of China Grants(No.12125403 and No.11874123)the National Key Research and Development Program of China(No.2021YFA1400503 and No.2021YFA1400202).
文摘Ultrashort energetic terahertz(THz)pulses have created an exciting new area of research on light interactions with matter.For material studies in small laboratories,widely tunable femtosecond THz pulses with peak field strength close to MV cm-1 are desired.Currently,they can be largely acquired by optical rectification and difference frequency generation in crystals without inversion symmetry.We describe in this paper a novel scheme of THz pulse generation with no frequency tuning gap based on Raman-resonance-enhanced four-wave mixing in centrosymmetric media,particularly diamond.We show that we could generate highly stable,few-cycle pulses with near-Gaussian spatial and temporal profiles and carrier frequency tunable from 5 to>2o THz.They had a stable and controllable carrier-envelop phase and carried~15 nJ energy per pulse at 10 THz(with a peak field strength of~1 MV cm^(-1)at focus)from a O.5-mm-thick diamond.The measured THz pulse characteristics agreed well with theoretical predictions.Other merits of the scheme are discussed,including the possibility of improving the THz output energy to a much higher level.
基金supported by the National Basic Research Program of China(No.2012CB921804)the National Natural Science Foundation of China(Nos.11204236 and 61308006)the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘A method of multi-beam femtosecond laser irradiation combined with modified HF-HNO3-CH3COOH etching is used for the parallel fabrication of all-silicon piano-concave microlens arrays (MLAs). The laser beam is split by a diffractive optical element and focused by a lens to drill microholes parallely on silicon. An HF-HNO3-H2SO4-CH3COOH solution is used to expand and polish laser-ablated microholes to form micro- lenses. Compared with the HF-HNO3-CH3COOH solution, the solution with H2SO4 can effectively reduce the etched surface roughness. The morphologies of MLAs at different laser powers and pulse numbers are observed. The image array formed by the silicon microlenses is also demonstrated.
基金Project supported by the Key Program of National Natural Science Foundation of China (Grant No.10705050)National Natural Science Foundation of China (Grant Nos.10875070,10805031,and 10905032)+1 种基金China Postdoctoral Science Foundation (Grant No.20080440031)China Postdoctoral Special Science Foundation (Grant No.200902088)
文摘This paper presents a method of generating terahertz (THz) coherent transition radiation (CTR) from picosecond ultrashort electron bunches including single and train bunches, which are produced by a photocathode radio frequency gun. The radiation characteristics of THz CTR including formation factor and energy spectrum are analysed in detail. With the help of a 2-dimensional particle-in-cell simulation, the radiation characteristics including power, energy and magnetic field are analysed. The results show that the radiation frequency can be adjusted by tuning the repetition frequency of the train bunch and the energy can be enhanced with the train bunches.
基金supported by the Collaborative Innovation Center of Suzhou Nano Science and Technologysupported by the National Basic Research Program of China (No.2012CB921804)+1 种基金the National Natural Science Foundation of China (Nos.11204236 and 61308006)The SEM work was done at the International Center for Dielectric Research (ICDR),Xi’an Jiaotong University,Xi’an,China
文摘A method for fabricating deep grating structures on a silicon carbide (SIC) surface by a femtosecond laser and chemical-selective etching is developed. Periodic lines corresponding to laser-induced structure change (LISC) are formed by femtosecond laser irradiation, and then the SiC material in the LISC zone is removed by a mixed solution of hydrofluoric acid and nitric acid to form grating grooves. Grating grooves with a high-aspect ratio of approximately 25 are obtained. To obtain a small grating period, femtosecond laser exposure through a phase mask was used to fabricate grating structures with a 1.07 μm period on the surface of the SiC.
基金This work was supported by the National Nature Science Foundation of Beijing under Grant No. 3021001 and the foundation of Liaocheng University.
文摘Ultrashort pulses were generated in passively mode-locked Nd:YAC and Nd:CdVO4 lasers pumped by a pulsed laser diode with 10-Hz repetition rate. Stable mode-locked pulse trains were produced with the pulse width of 10 ps. The evolution of the mode-locked pulse was observed in the experiment and was discussed in detail. Comparing the pulse evolutions of Nd:YAG and Nd:GdVO4 lasers, we found that the buildup time of the steady-state mode-locking with semiconductor saturable absorber mirrors (SESAMs) was relevant to the upper-state lifetime and the emission cross-section of the gain medium.
文摘OBJECTIVE: To evaluate the pain scores and rehabilitation of patientis with cervical spondylotic radiculopathy receiving massage therapy combined with traction and ultrashort wave therapy. METHODS: A total of 84 patients with cervical spondylotic radiculopathy treated in 105 Hospital of People's Liberation Army from June 2014 to June 2017 were included and divided into study group and control group according to different treatment regimens. A total of 42 patients in the study group was treated with cervical traction, ultrashort wave and massage therapy at the same time, whereas the other 42 patients in the control group were only treated with cervical traction and ultrashort wave. Comparison of the clinical efficacy and adverse reactions of the 2 groups was made and the Visual Analogue Scale (VAS) scores before and after treatment were observed to assess the patient's pain. Comparison of rehabilitation in the 2 groups was made by applying the Clinical Assessment Scale for Cervical Spondylosis (CASCS). RESULTS: After comparing the therapeutic effect between the study group and the control group, it showed that the total effective rate (90.48%) in the study group was significantly higher than that in the control group (73.81%), the difference was statistically significant (P < 0.05). By comparing the incidence of adverse reactions in the study group and the control group, results showed that the incidence of adverse reactions such as nausea, palpitations, vomiting, sweating, dizziness and colorless complexion in the study group (9.52%) was significantly lower than that in the control group (21.43%), the difference was statistically significant (P < 0.05). After the treatment, the VAS pain scores of the study group and the control group were both significantly improved (P < 0.05), but the improvement of the patients in the study group was more significantly (P < 0.05), and the difference was statistically significant. After treatment, the CASCS scores of the patients in the study group and the control group were sig
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11975154,12375236,12135009,and 12275249)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050100)。
文摘The generation of ultrashort high-power light sources in the mid-infrared(mid-IR)to terahertz(THz)range is of interest for applications in a number of fields,from fundamental research to biology and medicine.Besides conventional laser technology,photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses.Here,we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength.The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse.Owing to its relatively long wavelength,the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble.Consequently,the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths.This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.
基金Project supported by the Science and Technology Project of Guangdong(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.11974119)+1 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)the National Key R&D Program of China(Grant No.2018YFA0306200)。
文摘We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation measurement configuration,without requiring a specific form of the incident pulse function.A rigorous solution of the nonlinear coupled wave equation is obtained in the time domain and expressed in a general analytical form.The global model fully accounts for the nonlinear interaction and propagation effects within nonlinear crystals,which are not captured by the classical local model.To assess the performance of the global model compared to the classic local model,we investigate the autocorrelation signals obtained from both models for different incident pulse waveforms and different full-widthes at half-maximum(FWHMs).When the incident pulse waveform is Lorentzian with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 399.9 fs,while the classic local model predicts an FWHM of 331.4 fs.The difference between the two models is 68.6 fs,corresponding to an error of 17.2%.Similarly,for a sech-type incident pulse with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 343.9 fs,while the local model predicts an FWHM of 308.8 fs.The difference between the two models is 35.1 fs,with an error of 10.2%.We further examine the behavior of the models for Lorentzian pulses with FWHMs of 100 fs,200 fs and 500 fs.The differences between the global and local models are 17.1 fs,68.6 fs and 86.0 fs,respectively,with errors approximately around 17%.These comparative analyses clearly demonstrate the superior accuracy of the global model in intensity autocorrelation modeling.
文摘Background: The zone of calcified cartilage (ZCC) plays an important role in the pathogenesis of osteoarthritis (OA) but has never been imaged in vivo with magnetic resonance (MR) imaging techniques. We investigated the feasibility of direct imaging of the ZCC in both cadaveric whole knee specimens and in vivo healthy knees using a 3-dimensional ultrashort echo time cones (3D UTE-Cones) sequence on a clinical 3T scanner. Methods: In all, 12 cadaveric knee joints and 10 in vivo healthy were collected. At a 3T MR scanner with an 8-channel knee coil, a fat-saturated 3D dual-echo UTE-Cones sequence was used to image the ZCC, following with a short rectangular pulse excitation and 3D spiral sampling with conical view ordering. The regions of interests (ROIs) were delineated by a blinded observer. Singlecomponent T2* and T2 values were calculated from fat-saturated 3D dual-echo UTE-Cones and a Carr-Purcell-Meiboom-Gill (T2 CPMG) data using a semi-automated MATLAB code. Results: The single-exponential fitting curve of ZCC was accurately obtained with R2 of 0.989. For keen joint samples, the ZCC has a short T2* ranging from 0.62 to 2.55 ms, with the mean ±standard deviation (SD) of 1.49 ±0.66 ms, and with 95% confidence intervals (CI) of 1.20-1.78 ms. For volunteers, the short T2* ranges from 0.93 to 3.52ms, with the mean±SD of 2.09±0.56 ms, and the 95% CI is 1.43 to 2.74ms in ZCC. Conclusions: The high-resolution 3D UTE-Cones sequence might be used to directly image ZCC in the human knee joint on a clinical 3T scanner with a scan time of more than 10 min. Using this non-invasive technique, the T2* relaxation time of the ZCC can be further detected.