期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
风电集群短期及超短期功率预测精度改进方法综述 被引量:90
1
作者 彭小圣 熊磊 +4 位作者 文劲宇 程时杰 邓迪元 冯双磊 王勃 《中国电机工程学报》 EI CSCD 北大核心 2016年第23期6315-6326,6596,共12页
风电集群短期及超短期功率预测是提升电网健壮性的有力手段。该文总结国内外风电集群短期与超短期功率预测技术的现状,从集群和单个风电场两个方面,归纳风电功率预测技术的分类;从预测流程、数据来源、数据流向、物理层次4个方面论述风... 风电集群短期及超短期功率预测是提升电网健壮性的有力手段。该文总结国内外风电集群短期与超短期功率预测技术的现状,从集群和单个风电场两个方面,归纳风电功率预测技术的分类;从预测流程、数据来源、数据流向、物理层次4个方面论述风电集群功率预测系统的整体框架;提出具有泛化意义的风电功率预测的物理层次结构,并从数据层、映射层、特征层、模型层、反馈层5个不同的层面讨论风电功率预测技术的精度提升方法及其发展方向,对短期、超短期风电功率预测、集群功率预测的研究具有一定参考价值。 展开更多
关键词 风电集群预测 短期功率预测 超短期功率 预测物理层次 预测精度
下载PDF
基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测 被引量:40
2
作者 王渝红 史云翔 +3 位作者 周旭 曾琦 方飚 毕悦 《高电压技术》 EI CAS CSCD 北大核心 2022年第5期1884-1892,共9页
针对现有预测方法难以批量处理多风机间不同特征的问题,提出了基于时间模式注意力(temporal pattern attention,TPA)机制的双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络多风电机组超短期功率预测方法。首先,基于... 针对现有预测方法难以批量处理多风机间不同特征的问题,提出了基于时间模式注意力(temporal pattern attention,TPA)机制的双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络多风电机组超短期功率预测方法。首先,基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)获得风机原始功率信号的不同模态分量,以降低神经网络预测难度。其次,基于TPA机制,从Bi LSTM网络得到的隐藏行向量中提取多风机之间的复杂联系,从而使得具有不同特征的模态可以从不同时间步选择相关信息,进而降低各模态的预测误差。最后,将TPA机制与传统注意力机制应用于分散分布的14台风机区域功率预测任务。研究结果表明:基于本方法的多风电机组超短期功率预测的标准均方根误差仅为0.0546,证明TPA机制能有效提高多风电机组的超短期功率预测精度。 展开更多
关键词 超短期风电功率预测 多风电机组 时间模式注意力机制 双向长短时记忆 集合经验模态分解
下载PDF
基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法 被引量:34
3
作者 李卓 叶林 +3 位作者 戴斌华 於益军 罗雅迪 宋旭日 《高电压技术》 EI CAS CSCD 北大核心 2022年第6期2117-2127,共11页
针对传统超短期风电功率预测方法难以应对海量强波动性数据,且对时间序列处理能力有限的问题,提出一种基于改进的深度可分离卷积神经网络(the improved depthwise separable convolution neural networks,IDSCNN)、注意力机制(attention... 针对传统超短期风电功率预测方法难以应对海量强波动性数据,且对时间序列处理能力有限的问题,提出一种基于改进的深度可分离卷积神经网络(the improved depthwise separable convolution neural networks,IDSCNN)、注意力机制(attention mechanism,AM)、长短期记忆神经网络(long short-term memory neural network,LSTM)的超短期风电功率组合预测方法。首先,基于IDSCNN设计能够匹配风电场群时空维度变换的可分离卷积核尺寸,对数值天气预报数据、实测功率数据进行一次时空特征提取,以获取气象–功率时空特征。然后,结合AM强化一次时空特征长时间序列中局部重要信息的贡献程度,筛选出与未来预测功率密切相关的二次时空特征,以作为LSTM预测模型的输入时间序列。最后,建立包含改进的深度可分离卷积层、注意力权重分配层、LSTM预测层的IDSCNN-AM-LSTM组合神经网络超短期风电功率预测模型。仿真结果表明:该方法能够利用深度学习在挖掘高维非线性特征时的优势,对多个风电场之间的时空相关性进行充分学习,而且在单步风场功率预测和多步集群功率预测上,与其他预测模型相比均具有较高的预测精度和较好的时序学习能力。 展开更多
关键词 超短期风电功率预测 深度可分离卷积 注意力机制 长短期记忆神经网络 时间序列
下载PDF
基于CEEMD-SBO-LSSVR的超短期风电功率组合预测 被引量:31
4
作者 周小麟 童晓阳 《电网技术》 EI CSCD 北大核心 2021年第3期855-862,共8页
为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(least squares ... 为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(least squares support vector regression,LSSVR)模型的超短期风电功率组合预测方法。针对风电序列的随机波动性,采用CEEMD对风电功率序列进行分解,将分解得到的不同特征尺度的各分量作为LSSVR模型的训练输入量。引入SBO算法对LSSVR的正则化参数与核函数宽度进行优化,建立各分量的预测模型,将各分量的预测输出值叠加得到最终的风电功率预测值。所提CEEMD-SBO-LSSVR组合预测方法不仅有效降低了预测的复杂度,而且保证原始风电序列经模态分解处理后具有小的重构误差。仿真结果表明,与其他预测模型相比,所提方法具有较高的超短期风电功率预测精度。 展开更多
关键词 超短期风电预测 最小二乘支持向量回归 互补集合经验模态分解 缎蓝园丁鸟优化算法 组合模型
下载PDF
含超短期风功率预测增强处理的风储系统超前滚动优化控制策略 被引量:16
5
作者 李滨 邓有雄 陈碧云 《电网技术》 EI CSCD 北大核心 2021年第6期2280-2287,共8页
因风电固有的高不确定性与强随机性的特点,在电力市场中难以与传统机组相竞争,影响其大规模地接入电网。为提高风电跟踪计划出力能力与市场竞争力,首先结合电池储能系统,考虑风储系统运行约束,建立了以区域发电机组并网要求下惩罚电量... 因风电固有的高不确定性与强随机性的特点,在电力市场中难以与传统机组相竞争,影响其大规模地接入电网。为提高风电跟踪计划出力能力与市场竞争力,首先结合电池储能系统,考虑风储系统运行约束,建立了以区域发电机组并网要求下惩罚电量与电池吞吐量最小为目标的优化模型;其次利用卡尔曼滤波算法对超短期风电功率预测数据进行增强处理,提高预测功率的时间分辨率与预测精度;在此基础上,将预测增强处理与超前滚动优化结合,提出了一种含超短期风功率预测增强处理的风储系统超前滚动优化控制策略。仿真结果表明,所提优化控制策略可在满足传统机组并网要求下,提高风储系统市场竞争力与经济性。 展开更多
关键词 风储联合系统 超短期风电功率预测 预测增强处理 滚动优化 控制策略
下载PDF
基于二次分解NGO-VMD残差项与长短时记忆神经网络的超短期风功率预测 被引量:11
6
作者 宋江涛 崔双喜 刘洪广 《科学技术与工程》 北大核心 2023年第6期2428-2437,共10页
鉴于目前使用变分模态分解(variational modal decomposition, VMD)搭建的单次或二次分解风功率组合预测模型中,大多均直接忽略了风功率经VMD分解后残差项所包含的丰富信息,使得超短期风功率预测精度受限。提出了一种基于二次分解NGO-VM... 鉴于目前使用变分模态分解(variational modal decomposition, VMD)搭建的单次或二次分解风功率组合预测模型中,大多均直接忽略了风功率经VMD分解后残差项所包含的丰富信息,使得超短期风功率预测精度受限。提出了一种基于二次分解NGO-VMD残差项、K均值聚类算法与长短时记忆神经网络(long short-term memory, LSTM)的组合预测模型。首先,使用北方苍鹰优化算法(northern goshawk optimization, NGO)对VMD的参数进行寻优,以选出最佳VMD参数组合;其次,采用NGO-VMD模型对VMD残差项进行二次分解,深度挖掘VMD残差项所包含的丰富信息;再次,利用K均值聚类算法解决VMD分解模态分量个数多,计算量繁冗的问题;最后,创建LSTM模型对各子模态分量分别进行预测并叠加各子模态分量的预测值得到超短期风功率预测结果。结果表明:该二次分解NGO-VMD残差项、K均值聚类算法和LSTM组合预测模型可充分挖掘VMD残差项的重要信息,有效提高了超短期风功率预测的精度。 展开更多
关键词 二次分解 超短期风功率预测 北方苍鹰优化算法 K均值聚类算法 组合预测
下载PDF
基于XGBoost扩展金融因子的风电功率预测方法 被引量:7
7
作者 王永生 关世杰 +3 位作者 刘利民 高静 许志伟 刘广文 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第5期1038-1049,共12页
现有风电功率预测模型的主要输入特征包括气象数据和功率数据,高精度气象数据获取困难、数据间潜在关系难以表示、预测模型收敛缓慢,提出基于极端梯度提升回归树算法(XGBoost)扩展金融因子的超短期风电功率预测新方法,以及基于风电时序... 现有风电功率预测模型的主要输入特征包括气象数据和功率数据,高精度气象数据获取困难、数据间潜在关系难以表示、预测模型收敛缓慢,提出基于极端梯度提升回归树算法(XGBoost)扩展金融因子的超短期风电功率预测新方法,以及基于风电时序数据衍生金融因子的预测模型.采用具有较高预测准确率与较快训练速度的XGBoost算法进行预测,使得预测模型快速收敛.在中国内蒙古某风电场的风电功率数据集与德国Tennet公司风电功率数据集上进行实验验证.实验结果表明,以R2score为例,所提方法与基准方法相比提升约14.71%.所提方法中的建模与预测合计时间不超过500 ms. 展开更多
关键词 风力发电 超短期风电功率预测 梯度提升回归树 XGBoost 金融因子
下载PDF
基于VMD-IGWO-SVM的风电功率超短期预测研究 被引量:6
8
作者 沈岳峰 都洪基 《电工电气》 2019年第1期20-25,共6页
为了提高风电功率预测精度,保证风能的有效利用,提出一种基于变分模态分解和改进灰狼算法优化支持向量机的风电功率超短期组合预测模型。采用变分模态分解将风电功率序列分解为一系列具有不同中心频率的模态分量以降低其随机性,将各分... 为了提高风电功率预测精度,保证风能的有效利用,提出一种基于变分模态分解和改进灰狼算法优化支持向量机的风电功率超短期组合预测模型。采用变分模态分解将风电功率序列分解为一系列具有不同中心频率的模态分量以降低其随机性,将各分量分别建立支持向量机预测模型,并采用改进灰狼算法对其参数寻优,将各分量的预测值叠加重构得到最终的预测值。实例仿真表明,所提的组合预测模型与其他预测模型相比具有更高的预测精度。 展开更多
关键词 风电功率超短期预测 变分模态分解 改进灰狼算法 支持向量机 预测精度
下载PDF
大型风电场超短期风电功率预测 被引量:6
9
作者 廖志民 孙晔 张欢 《电网与清洁能源》 2013年第2期75-79,85,共6页
针对大规模风电场风电功率的非线性特性,采用最小二乘支持向量机(LS-SVM)的预测模型。由于LS-SVM的参数选择直接影响着模型的预测精度,于是采用一种基于量子粒子群优化方法来选择模型的超参数。为了弥补模型损失的鲁棒性,通过给每个样... 针对大规模风电场风电功率的非线性特性,采用最小二乘支持向量机(LS-SVM)的预测模型。由于LS-SVM的参数选择直接影响着模型的预测精度,于是采用一种基于量子粒子群优化方法来选择模型的超参数。为了弥补模型损失的鲁棒性,通过给每个样本误差不同的权系数,建立了具有良好泛化性能的WLS-SVM回归模型,从而进一步提高了模型预测的精度。本文提出一种基于量子粒子群优化(Quantumbehaved Particle Swarm Optimization,QPSO)参数选择的加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLS-SVM)的超短期风电功率预测模型。应用上述方法对内蒙古地区大型风电场进行了预测,结果证明了该方法的有效性。 展开更多
关键词 量子粒子群优化 最小二乘支持向量机 超短期风电功率预测 鲁棒性
下载PDF
基于相似曲线簇和GBRT方法的超短期风电功率预测 被引量:6
10
作者 张颖超 黄飞 +2 位作者 邓华 支兴亮 李慧玲 《华北电力大学学报(自然科学版)》 CAS 北大核心 2018年第6期15-20,共6页
为了减少训练数据的冗余信息,提高风电功率预测的精度,提出了基于相似曲线簇和GBRT方法的超短期风电功率预测模型。首先对历史风速序列进行相似曲线簇的提取,采用相似离度作为相似性判据,对大量历史风速序列与测试集风速序列进行相似性... 为了减少训练数据的冗余信息,提高风电功率预测的精度,提出了基于相似曲线簇和GBRT方法的超短期风电功率预测模型。首先对历史风速序列进行相似曲线簇的提取,采用相似离度作为相似性判据,对大量历史风速序列与测试集风速序列进行相似性的判断,继而找出相似性好的风速曲线簇以及曲线簇中每个风速点对应的功率,并将其作为最终的训练样本,然后采用梯度提升回归树(GBRT)模型进行风电功率的预测。用上海某风场的数据进行对比试验,结果表明,该方法能够明显提高超短期风电功率预测的精度,具有实际意义。 展开更多
关键词 超短期风电功率预测 相似曲线簇 相似离度 GBRT
下载PDF
基于NACEMD-Elman神经网络的风功率组合预测 被引量:5
11
作者 杨楠 叶迪 +3 位作者 周峥 鄢晶 黄禹 董邦天 《水电能源科学》 北大核心 2018年第9期209-211,171,共4页
在电力系统中风电装机容量增长的背景下,高精度的超短期风功率预测是保证系统可靠运行的重要基础。为此,提出一种以复数据经验模态分解的噪声辅助信号分解法(NACEMD)和Elman神经网络为基础的超短期风功率组合预测方法。在风功率序列中... 在电力系统中风电装机容量增长的背景下,高精度的超短期风功率预测是保证系统可靠运行的重要基础。为此,提出一种以复数据经验模态分解的噪声辅助信号分解法(NACEMD)和Elman神经网络为基础的超短期风功率组合预测方法。在风功率序列中添加白噪声,使用NACEMD将其按照不同波动尺度逐级分解,得到不同时频特性的分量,然后利用Elman神经网络对各分量建立预测模型,以各分量的不同时频特性为基准对预测结果进行叠加,得到风功率预测值。实例分析表明,提出的组合预测法既可进一步减轻现有方法中存在的模态混叠现象,具备较高的预测精度。研究成果可为风功率预测提供参考。 展开更多
关键词 超短期风功率预测 复数据经验模态分解的噪声辅助信号分解法 神经网络 组合预测 误差分析
下载PDF
基于超短期风电功率预测的混合储能控制策略研究 被引量:5
12
作者 李燕青 袁燕舞 +3 位作者 郭通 王子睿 仝年 史依茗 《电测与仪表》 北大核心 2017年第15期50-57,共8页
为了改善风机出力特性,提出了一种基于超短期风电功率预测的混合储能控制策略。首先,利用解析模态分解方法从风电信号中提取低频信号,采用了一种改进布谷鸟方法优化支持向量机的惩罚因子参数和核函数参数进行超短期功率预测;然后,对低... 为了改善风机出力特性,提出了一种基于超短期风电功率预测的混合储能控制策略。首先,利用解析模态分解方法从风电信号中提取低频信号,采用了一种改进布谷鸟方法优化支持向量机的惩罚因子参数和核函数参数进行超短期功率预测;然后,对低频预测信号建立1 min时间尺度和30 min时间尺度的功率波动并网指标,判断是否触发蓄电池动作,若动作,采用AMD分解自适应调整低频预测信号的截止频率,直到满足并网要求,确定蓄电池补偿功率指令。最后根据蓄电池荷电状态和补偿功率指令自适应调节原始风电信号截止频率,高频信号通过模糊控制由超级电容器补偿。仿真算例表明,该方法可以有效平滑功率波动,减少蓄电池的循环次数,同时保证了蓄电池储能的平滑能力,避免过充过放,延长蓄电池的寿命。 展开更多
关键词 混合储能 解析模态分解 改进布谷鸟 超短期功率预测 功率波动 自适应调节
下载PDF
基于原子稀疏分解和混沌理论的风电功率超短期多步预测 被引量:4
13
作者 杨茂 刘慧宇 崔杨 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2019年第4期64-71,共8页
为提升大规模风电场风电功率超短期预测精度,减少由风电功率大幅度波动对电力系统带来的不利影响,提出一种基于原子稀疏分解(Atomic Sparse Decomposition,ASD)和混沌理论的风电功率超短期多步预测模型.首先,利用ASD良好的序列趋势跟踪... 为提升大规模风电场风电功率超短期预测精度,减少由风电功率大幅度波动对电力系统带来的不利影响,提出一种基于原子稀疏分解(Atomic Sparse Decomposition,ASD)和混沌理论的风电功率超短期多步预测模型.首先,利用ASD良好的序列趋势跟踪特性,将风电功率时间序列分解成多个原子趋势分量和一个残差随机分量;其次分别利用自适应预测法和混沌理论对两分量进行超短期预测;最后,将两分量的预测结果叠加,得到最终的风电功率预测结果.选取我国东北某区域风电功率数据为例,算例结果表明,相较于传统预测模型,本文的预测方法能够有效地提升大规模风电场风电功率超短期预测精度. 展开更多
关键词 超短期风电功率预测 原子稀疏分解 混沌理论 预测精度 分频预测
原文传递
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
14
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 超短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
下载PDF
基于CEEMDAN-PE-WPD和多目标优化的超短期风电功率预测方法 被引量:3
15
作者 常雨芳 杨子潇 +2 位作者 潘风 唐杨 黄文聪 《电网技术》 EI CSCD 北大核心 2023年第12期5015-5025,共11页
为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)... 为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)和多目标优化的超短期风电功率预测方法。首先,利用CEEMDAN、PE和WPD构成的信号处理方法降低原始风电信号的随机性和波动性;然后,将分解后的子分量输入到长短期记忆(long short-term memory,LSTM)神经网络,并且利用精英T分布麻雀优化算法(elite t-distribution sparrow optimization algorithm,ETSSA)优化LSTM的隐藏层单元数,提升LSTM网络的预测性能;最后,建立多目标优化损失函数,将准确率、稳定度和合格率3个优化目标同时加入到损失函数中,综合提升模型的预测性能。对内蒙古某地区风力发电场的实测数据进行实验分析结果表明,与其他经典预测方法相比,所提方法提升风电功率预测性能有显著效果,并且在不同季节风况下预测效果良好。 展开更多
关键词 超短期风电功率预测 总体平均经验模态分解 排列熵 小波包分解 长短期记忆神经 精英T分布麻雀优化算法 多目标优化
下载PDF
基于改进Cao算法的SSA与误差修正的超短期风电功率预测
16
作者 张开伟 文中 +2 位作者 杨生鹏 胡梓涵 丁剑 《国外电子测量技术》 2024年第8期37-46,共10页
针对风电历史信息运用不充分和未充分挖掘机器学习模型潜力的问题,提出一种特征奇异谱分析和模型误差修正的超短期功率预测。首先,利用随机森林分析不同特征对输出功率的影响程度,并利用累积贡献率进行特征提取。其次,通过改进的Cao算... 针对风电历史信息运用不充分和未充分挖掘机器学习模型潜力的问题,提出一种特征奇异谱分析和模型误差修正的超短期功率预测。首先,利用随机森林分析不同特征对输出功率的影响程度,并利用累积贡献率进行特征提取。其次,通过改进的Cao算法确定奇异谱分析最佳嵌入维数,对提取的特征实现降噪处理,从而构建风电功率预测模型。最后,利用预测值与真实值的误差构建误差预测模型,通过预测的误差来修正功率预测的结果。以国内某小型风电场算例结果表明,所提方法较卷积神经网络-长短期记忆(CNN-LSTM)预测模型均方根误差(RSME)和均方误差(MSE)分别降低45%和53%,验证了所提模型的有效性。 展开更多
关键词 奇异谱分析 超短期功率预测 随机森林 累积贡献率 Cao算法 误差修正
下载PDF
基于低风速功率修正和损失函数改进的超短期风电功率预测
17
作者 臧海祥 赵勇凯 +3 位作者 张越 程礼临 卫志农 秦雪妮 《电力系统自动化》 EI CSCD 北大核心 2024年第7期248-257,共10页
风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖... 风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系。为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正。针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性。结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果。 展开更多
关键词 超短期风电功率预测 功率修正 损失函数改进 神经网络模型
下载PDF
基于动态集成LSSVR的超短期风电功率预测 被引量:3
18
作者 刘荣胜 彭敏放 +2 位作者 张海燕 万勋 沈美娥 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期79-86,共8页
针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acqu... 针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显. 展开更多
关键词 超短期风电功率预测 最小二乘支持向量回归 动态集成 动态时间弯曲距离 数值天气预报
下载PDF
基于RCC-GRU模型的超短期风电功率预测方法 被引量:2
19
作者 程江洲 潘飞 鲍刚 《计算机仿真》 北大核心 2023年第2期79-83,共5页
准确高效的风电功率预测对于风电场和电网的稳定运行非常重要。提出了一种基于辐射分类坐标(RCC)和门控循环单元(GRU)的超短期风电功率预测方法。首先,分析了不同气象因素对风力发电的影响以及不同时间段的影响程度。其次,提出了一种辐... 准确高效的风电功率预测对于风电场和电网的稳定运行非常重要。提出了一种基于辐射分类坐标(RCC)和门控循环单元(GRU)的超短期风电功率预测方法。首先,分析了不同气象因素对风力发电的影响以及不同时间段的影响程度。其次,提出了一种辐射分类坐标方法对相似的时间段进行分类和选择,将所选相似时间段的数据集(包括发电量和多元气象数据)重建为训练数据集。然后,将GRU神经网络作为该模型的学习网络。实验结果表明,所提出的模型的预测准确率和确定系数分别为97.6%和98.99%,并结合3个误差指标和训练时间分析,RCC-GRU模型的准确性和效率均优于其它3个比较模型。 展开更多
关键词 超短期风电预测 辐射分类坐标 相似时间段 门控循环单元
下载PDF
基于VMD-AM-WGAN的超短期风电功率预测 被引量:2
20
作者 程江涛 王灵梅 +6 位作者 孟恩隆 刘玉山 贾成真 陈政坤 李永龙 王凯林 原升耀 《机械设计与制造工程》 2022年第10期120-124,共5页
针对风电功率序列中存在噪声、影响风电功率的多个因素对超短期风电功率预测的影响程度不同以及原始生成对抗网络模型不收敛、不稳定等问题,提出了一种基于变分模态分解的生成对抗网络(VMD-AM-WGAN)模型。该模型由变分模态分解与注意力... 针对风电功率序列中存在噪声、影响风电功率的多个因素对超短期风电功率预测的影响程度不同以及原始生成对抗网络模型不收敛、不稳定等问题,提出了一种基于变分模态分解的生成对抗网络(VMD-AM-WGAN)模型。该模型由变分模态分解与注意力机制、长短期记忆神经网络结合作为生成器,卷积神经网络作为判别器;使用W距离作为生成器的目标函数,并用利普希茨连续条件对判别器进行限制,以提高模型稳定性。现场试验的预测结果表明,该模型提高了风电功率预测的精度,月平均准确率达到90%以上。 展开更多
关键词 超短期风电功率预测 变分模态分解 特征注意力机制 生成对抗网络
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部