随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交...随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交换机制由于慢速磁盘的读写速度限制,无法被广泛应用.近年来,得益于超低延迟固态硬盘(solid state drive,SSD)的快速发展,页交换机制可以利用其低延迟的读写特性,提升页交换效率.然而,在低I/O延迟的情况下,传统页交换机制的I/O栈存在巨大的软件开销.首先对使用超低延迟SSD的Linux页交换机制进行测试与分析,发现现有页交换机制的主要瓶颈在于发送请求时存在队头阻塞问题、I/O合并和调度开销,以及内核返回路径上的中断处理和直接内存回收开销.基于分析结果,提出基于超低延迟SSD的页交换机制Ultraswap.Ultraswap在Linux I/O栈的基础上增加对轮询请求的处理,并降低I/O合并与调度开销,实现轻量级的I/O栈.基于Ultraswap的I/O栈,对内核页交换机制的换入与换出路径进一步优化.通过优化对缺页、直接内存回收的处理,降低页交换机制关键路径上的时间开销.实验结果表明Ultraswap在应用测试场景下相比Linux页交换机制能够提升19%的平均性能;在可使用内存比例为20%的情况下,Ultraswap可达到33%的性能提升.展开更多
Key challenges for 5G and Beyond networks relate with the requirements for exceptionally low latency, high reliability, and extremely high data rates. The Ultra-Reliable Low Latency Communication (URLLC) use case is t...Key challenges for 5G and Beyond networks relate with the requirements for exceptionally low latency, high reliability, and extremely high data rates. The Ultra-Reliable Low Latency Communication (URLLC) use case is the trickiest to support and current research is focused on physical or MAC layer solutions, while proposals focused on the network layer using Machine Learning (ML) and Artificial Intelligence (AI) algorithms running on base stations and User Equipment (UE) or Internet of Things (IoT) devices are in early stages. In this paper, we describe the operation rationale of the most recent relevant ML algorithms and techniques, and we propose and validate ML algorithms running on both cells (base stations/gNBs) and UEs or IoT devices to handle URLLC service control. One ML algorithm runs on base stations to evaluate latency demands and offload traffic in case of need, while another lightweight algorithm runs on UEs and IoT devices to rank cells with the best URLLC service in real-time to indicate the best one cell for a UE or IoT device to camp. We show that the interplay of these algorithms leads to good service control and eventually optimal load allocation, under slow load mobility. .展开更多
文摘随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交换机制由于慢速磁盘的读写速度限制,无法被广泛应用.近年来,得益于超低延迟固态硬盘(solid state drive,SSD)的快速发展,页交换机制可以利用其低延迟的读写特性,提升页交换效率.然而,在低I/O延迟的情况下,传统页交换机制的I/O栈存在巨大的软件开销.首先对使用超低延迟SSD的Linux页交换机制进行测试与分析,发现现有页交换机制的主要瓶颈在于发送请求时存在队头阻塞问题、I/O合并和调度开销,以及内核返回路径上的中断处理和直接内存回收开销.基于分析结果,提出基于超低延迟SSD的页交换机制Ultraswap.Ultraswap在Linux I/O栈的基础上增加对轮询请求的处理,并降低I/O合并与调度开销,实现轻量级的I/O栈.基于Ultraswap的I/O栈,对内核页交换机制的换入与换出路径进一步优化.通过优化对缺页、直接内存回收的处理,降低页交换机制关键路径上的时间开销.实验结果表明Ultraswap在应用测试场景下相比Linux页交换机制能够提升19%的平均性能;在可使用内存比例为20%的情况下,Ultraswap可达到33%的性能提升.
文摘Key challenges for 5G and Beyond networks relate with the requirements for exceptionally low latency, high reliability, and extremely high data rates. The Ultra-Reliable Low Latency Communication (URLLC) use case is the trickiest to support and current research is focused on physical or MAC layer solutions, while proposals focused on the network layer using Machine Learning (ML) and Artificial Intelligence (AI) algorithms running on base stations and User Equipment (UE) or Internet of Things (IoT) devices are in early stages. In this paper, we describe the operation rationale of the most recent relevant ML algorithms and techniques, and we propose and validate ML algorithms running on both cells (base stations/gNBs) and UEs or IoT devices to handle URLLC service control. One ML algorithm runs on base stations to evaluate latency demands and offload traffic in case of need, while another lightweight algorithm runs on UEs and IoT devices to rank cells with the best URLLC service in real-time to indicate the best one cell for a UE or IoT device to camp. We show that the interplay of these algorithms leads to good service control and eventually optimal load allocation, under slow load mobility. .