期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于紫外与近红外光谱技术的青风藤渗漉和萃取过程在线监测和终点判断方法研究
1
作者 王玺 铁德福 +3 位作者 钱嘉禾 叶成 周俊杰 李文龙 《中华中医药杂志》 CAS CSCD 北大核心 2024年第5期2438-2443,共6页
目的:利用紫外光谱(UVS)与近红外光谱(NIRS)对青风藤的渗漉和萃取过程进行在线监测和终点判断。方法:采集渗漉过程中渗漉液的UV光谱,使用偏最小二乘回归法(PLSR)建立与盐酸青藤碱(SH)含量的定量校正模型,采用因子数、估计均方根误差(RMS... 目的:利用紫外光谱(UVS)与近红外光谱(NIRS)对青风藤的渗漉和萃取过程进行在线监测和终点判断。方法:采集渗漉过程中渗漉液的UV光谱,使用偏最小二乘回归法(PLSR)建立与盐酸青藤碱(SH)含量的定量校正模型,采用因子数、估计均方根误差(RMSEE)、决定系数R^(2)及Q^(2)、交叉验证均方根误差(RMSECV)和预测均方根误差(RMSEP)评价模型的拟合能力及预测能力;萃取过程同样使用PLSR建立UVS与NIRS的定量校正模型,同样采用因子数、RMSEE、R^(2)、Q^(2)、RMSECV及RMSEP作为评价模型的拟合能力及对未知样品的预测能力指标。结果:无预处理与经过一阶导数预处理的渗漉过程UVS模型R^(2)、Q^(2)、RMSEE、RMSECV和RMSEP均较为接近,有较强的拟合能力和预测能力;通过单独建模后,萃取过程的NIRS和UVS模型的SH浓度预测性能较好,UVS单独建立的水相模型RMSECV较小(0.21),NIRS单独建立的氯仿相模型RMSECV较小(2.68)。结论:利用UVS与NIRS技术,建立青风藤渗漉过程与萃取过程的SH浓度模型拟合预测性能和稳健性良好,有望实现渗漉过程和萃取过程的可视化。 展开更多
关键词 紫外光谱 近红外光谱 青风藤 盐酸青藤碱 在线监测 终点判断
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部