期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
双鉴别器盲超分重建方法研究
1
作者 卢迪 于国梁 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期277-286,共10页
图像超分变率重建方法在公共安全检测、卫星成像、医学和照片恢复等方面有着十分重要的用途。该文对基于生成对抗网络的超分辨率重建方法进行研究,提出一种基于纯合成数据训练的真实世界盲超分算法(RealESRGAN)的UNet3+双鉴别器Real-ESR... 图像超分变率重建方法在公共安全检测、卫星成像、医学和照片恢复等方面有着十分重要的用途。该文对基于生成对抗网络的超分辨率重建方法进行研究,提出一种基于纯合成数据训练的真实世界盲超分算法(RealESRGAN)的UNet3+双鉴别器Real-ESRGAN方法(Double Unet3+Real-ESRGAN, DU3-Real-ESRGAN)。首先,在鉴别器中引入UNet3+结构,从全尺度捕捉细粒度的细节和粗粒度的语义。其次,采用双鉴别器结构,一个鉴别器学习图像纹理细节,另一个鉴别器关注图像边缘,实现图像信息互补。在Set5, Set14, BSD100和Urban100数据集上,与多种基于生成对抗网络的超分重建方法相比,除Set5数据集外,DU3-Real-ESRGAN方法在峰值信噪比(PSNR)、结构相似性(SSIM)和无参图像考评价指标(NIQE)都优于其他方法,产生了更直观逼真的高分辨率图像。 展开更多
关键词 超分辨率重建 纯合成数据训练的真实世界盲超分算法 unet3+ 双鉴别器
下载PDF
改进的UNet3+网络高分辨率遥感影像道路提取
2
作者 周家厚 普运伟 +3 位作者 陈如俊 邓云龙 周鑫城 李俊 《激光杂志》 CAS 北大核心 2024年第2期161-168,共8页
为解决UNet3+网络随深度加深出现大量融合冗余操作以至于模型训练时间过长而导致在道路提取中运用较少的问题,对UNet3+网络进行改进,通过删减UNet3+的网络层级使用Bottleneck模块替换原有网络中的卷积层,保留网络特征融合能力的同时降... 为解决UNet3+网络随深度加深出现大量融合冗余操作以至于模型训练时间过长而导致在道路提取中运用较少的问题,对UNet3+网络进行改进,通过删减UNet3+的网络层级使用Bottleneck模块替换原有网络中的卷积层,保留网络特征融合能力的同时降低网络复杂度,并引入混合注意力机制优化模型,构建了一个新的网络模型。将改进方法与几种典型的道路提取模型做对比。实验结果表明:(1)所提方法相较于Unet3+网络在、Recall、IOU、ACC四个指标上分别提升了4.72%、2.46%、4.84%、2.01%,均优于对比算法;(2)对比几个经典的特征提取模型,改进的模型具有更好的识别效果,在道路提取的精度、连接性、完整性等方面均表现出优越性。 展开更多
关键词 深度学习 注意力机制 unet3+ 道路提取 跳跃连接
下载PDF
基于改进UNet3+的岩心图像颗粒提取算法
3
作者 王浩 熊淑华 +2 位作者 何海波 吴晓红 滕奇志 《计算机系统应用》 2024年第1期199-205,共7页
在石油勘探过程中,岩心颗粒是研究地质层序、评估油气含量以及认识地质构造的有效资料,对岩心颗粒图像进行颗粒提取有利于地质研究人员后续的深入分析.岩心颗粒图像通常存在颗粒边缘模糊、背景与颗粒色彩复杂的问题.为了改善岩心颗粒提... 在石油勘探过程中,岩心颗粒是研究地质层序、评估油气含量以及认识地质构造的有效资料,对岩心颗粒图像进行颗粒提取有利于地质研究人员后续的深入分析.岩心颗粒图像通常存在颗粒边缘模糊、背景与颗粒色彩复杂的问题.为了改善岩心颗粒提取的效果,本文设计了一种基于改进UNet3+的岩心图像颗粒提取算法.该算法在UNet3+的每个编码层后加入感受野模块(RFB)来扩大网络的感受野,从而有效地解决网络因感受野受限而导致的分割精度低的问题,并在RFB模块后嵌入了卷积块注意力模块(CBAM)使网络更加精确地聚焦于目标区域,提高目标区域的特征权重.实验结果表明,改进后的算法在岩心颗粒图像上具有良好的分割效果,相比原始UNet3+网络,分别在mIoU、mPA和FWIoU上提升了5.43%、2.99%和5.34%. 展开更多
关键词 岩心颗粒图像 unet3+ 感受野 卷积块注意力 注意力机制 语义分割
下载PDF
基于改进UNet3+网络的雷达辐射源信号识别 被引量:3
4
作者 李霜 董玮 +2 位作者 董会旭 凌云飞 张歆东 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2022年第2期55-60,共6页
针对传统识别辐射源信号的方法需要手动提取并选取特征、在低信噪比条件下难以准确识别信号的问题,提出了一种基于改进UNet3+网络的辐射源信号识别方法。通过删减UNet3+的网络层级,保留网络特征融合能力的同时降低了网络的复杂度,并引... 针对传统识别辐射源信号的方法需要手动提取并选取特征、在低信噪比条件下难以准确识别信号的问题,提出了一种基于改进UNet3+网络的辐射源信号识别方法。通过删减UNet3+的网络层级,保留网络特征融合能力的同时降低了网络的复杂度,并引入注意力机制优化模型性能,构建了一个新的网络模型。通过对8种常见的雷达信号进行仿真实验,实验结果表明:改进模型的识别准确率达到96.63%,对比一些经典网络模型,训练总用时更短,在低信噪比条件下能更加有效识别辐射源信号,可以适应复杂的电磁环境。 展开更多
关键词 雷达信号 深度学习 unet3+ 注意力机制 低信噪比
下载PDF
基于UNet3+的伽马成像测井自动解释方法 被引量:1
5
作者 沈楠 段友祥 +1 位作者 孙岐峰 李娜 《测井技术》 CAS 2022年第3期283-293,共11页
鉴于传统的伽马成像测井解释对地层轮廓的拾取往往依赖于人工解释或者解释软件辅助,存在工作量大、识别精度不高、效率低等问题,提出一种基于卷积神经网络UNet3+的伽马成像测井自动解释方法,实现伽马图像像素级分割,自动拾取地层轮廓,... 鉴于传统的伽马成像测井解释对地层轮廓的拾取往往依赖于人工解释或者解释软件辅助,存在工作量大、识别精度不高、效率低等问题,提出一种基于卷积神经网络UNet3+的伽马成像测井自动解释方法,实现伽马图像像素级分割,自动拾取地层轮廓,并采用非极大值抑制法细化地层轮廓,从而使地层轮廓更好地呈现出正弦构造,同时提高倾角计算的精度。在轮廓分割结果图中,采用Selective Search算法计算轮廓拟合区域,生成目标轮廓候选框,在候选框内拟合地层轮廓点并进行倾角计算。通过在实际伽马成像测井资料上进行实验,结果和分析表明,该方法可以有效提取出地层轮廓,保证伽马成像测井解释的准确率,提高解释工作效率,较好地满足实际生产应用需求。 展开更多
关键词 测井解释 伽马成像测井 unet3+ 轮廓细化 Selective Search算法
下载PDF
基于MultiRes-Unet神经网络的三维断层识别研究 被引量:1
6
作者 李泽伟 朱培民 +3 位作者 张昊 廖志颖 李广超 郑浩然 《石油物探》 CSCD 北大核心 2024年第1期91-103,共13页
三维地震数据中的断层规模从米级到千米级不等,断距从米级到数十米级不等。断层通常表现为同相轴错断、突然增减、消失或扭曲等显著地震响应特征。断层在三维地震数据体中占的体积比例很小,使得利用常规断层识别方法得到的断层识别结果... 三维地震数据中的断层规模从米级到千米级不等,断距从米级到数十米级不等。断层通常表现为同相轴错断、突然增减、消失或扭曲等显著地震响应特征。断层在三维地震数据体中占的体积比例很小,使得利用常规断层识别方法得到的断层识别结果存在不连续、识别率低等问题。针对断层的多分辨率特征,充分考虑了断层点或线在整个地震数据的占比小等特点,提出了一种三维神经网络MultiRes-Unet3D断层识别方法,该方法在网络学习过程中使用加权交叉熵损失函数解决了普通交叉熵损失函数不同项之间的平衡问题,使得神经网络具有了较为可靠的断层识别能力。首先,利用正演模拟方法生成三维合成地震数据集和断层标签,然后基于Tensorflow搭建、训练与测试MultiRes-Unet3D神经网络,再将训练好的网络模型迁移到实际三维地震数据的断层识别中。该神经网络断层识别方法在实际地震数据中的应用表明,断层识别结果空间连续性好,识别结果客观,断层边界更为准确,网络模型泛化性能良好,适用于具有不同断层构造特征的实际地震数据,节约了断层解释的时间成本与人工成本。 展开更多
关键词 地震资料解释 断层识别 深度学习 Tensorflow MultiRes-unet3D
下载PDF
基于Half-UNet的乳腺肿块分割方法
7
作者 卢浩然 吴福彬 +1 位作者 王统 徐胜舟 《中南民族大学学报(自然科学版)》 CAS 北大核心 2023年第4期482-488,共7页
乳腺癌是常见的高发病率肿瘤疾病,乳腺肿块分割是乳腺肿瘤分析的重要步骤.为了在保证乳腺肿瘤分割精度的同时提高分割效率,提出了一种基于Half-UNet的乳腺X线摄片图像分割方法.该方法保留了U-Net中分而治之的部分,简化了特征融合的方式... 乳腺癌是常见的高发病率肿瘤疾病,乳腺肿块分割是乳腺肿瘤分析的重要步骤.为了在保证乳腺肿瘤分割精度的同时提高分割效率,提出了一种基于Half-UNet的乳腺X线摄片图像分割方法.该方法保留了U-Net中分而治之的部分,简化了特征融合的方式.固定U-Net编码器各步骤的特征图通道数以减少网络复杂度的同时有利于解码器的特征融合,并对编码器中的卷积操作增加了he_normal和L2正则化,提升网络性能且缓解网络的过拟合现象.对U-Net解码器的网络结构进行简化,减少网络模型的参数量和训练时间.在DDSM数据集上的实验结果表明:Half-UNet在获得与U-Net、UNet3+模型相近的分割精度的情况下,训练时间相对于U-Net和UNet3+缩短了41.66%和83.33%,显著提升了分割效率. 展开更多
关键词 乳腺X线摄片 U-Net网络 unet3+网络 Half-unet网络 图像分割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部