期刊文献+
共找到474篇文章
< 1 2 24 >
每页显示 20 50 100
基于改进UNet孪生网络的遥感影像矿区变化检测 被引量:31
1
作者 向阳 赵银娣 董霁红 《煤炭学报》 EI CAS CSCD 北大核心 2019年第12期3773-3780,共8页
矿产资源的开采在促进区域经济发展的同时,也造成了地表破坏,对生态环境造成了影响。利用遥感技术及时获取矿区土地利用覆盖和生态环境的变化信息,可以辅助矿区生态保护和生态恢复。针对传统变化检测方法中需要提取大量人工设计的图像特... 矿产资源的开采在促进区域经济发展的同时,也造成了地表破坏,对生态环境造成了影响。利用遥感技术及时获取矿区土地利用覆盖和生态环境的变化信息,可以辅助矿区生态保护和生态恢复。针对传统变化检测方法中需要提取大量人工设计的图像特征,提出一种改进UNet孪生网络结构。用卷积层代替UNet结构中的池化层,加入中心环绕、双通道图像输入的孪生结构和特征金字塔模块,对遥感影像进行端到端的矿区变化检测。首先,对经过数据预处理的前后两时期遥感影像利用中心环绕的方法进行裁剪,获取图像的多尺度信息,将裁剪后的中心区域和环绕区域的影像分别输入到网络的孪生结构编码端,通过权值共享的孪生结构提取前后两时期影像的差异信息;然后,将同一特征层上的特征进行相减,获取前后两时期影像在不同卷积层上的差值影像并进行特征融合,把融合后的图像送入特征金字塔模块获取图像多尺度上下文信息。最后,将编码端和解码端对应层跳跃连接,进行端到端的预测,得到前后两时期矿区遥感影像的变化二值图像。实验结果表明:改进的变化检测网络方法与传统方法相比可以自动的提取图像的低层特征和高层语义特征,避免了人工提取图像特征的繁琐。此外,在检测结果上,改进的变化检测方法与对比方法相比,总体精度和Kappa系数有明显提高,同时也降低了检测的误检率和漏检率。 展开更多
关键词 矿区变化检测 深度学习 高分辨率遥感影像 unet
下载PDF
基于FPN Res-Unet的高分辨率遥感影像建筑物变化检测 被引量:28
2
作者 王明常 朱春宇 +4 位作者 陈学业 王凤艳 李婷婷 张海明 韩有文 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2021年第1期296-306,共11页
针对城市土地资源变化检测工作繁杂、工作量大、自动化程度低等问题,本文提出一种基于深度学习模型的高分辨率遥感影像建筑物变化检测方法,将语义分割的思想引入到遥感变化检测。基于残差结构特征较卷积层提取性能更优和特征金字塔网络... 针对城市土地资源变化检测工作繁杂、工作量大、自动化程度低等问题,本文提出一种基于深度学习模型的高分辨率遥感影像建筑物变化检测方法,将语义分割的思想引入到遥感变化检测。基于残差结构特征较卷积层提取性能更优和特征金字塔网络多尺度预测的特点,将残差结构和特征金字塔网络融合到Unet模型中,建立FPN Res-Unet模型。该模型以Unet为基础,引入ResNet18的残差结构作为编码路径特征提取层,在每次卷积后使用边界填充,使得输入图像和输出图像尺寸一致;在解码路径每级上采样过程中,拓展支路径将特征金字塔网络融合到模型的网络主干中,将残差结构、Unet及特征金字塔网络的优点相互融合,增强了Unet的特征提取,弥补了语义分割网络对小目标检测的欠缺;在获取深层语义信息的同时关注细节信息,提高建筑物变化检测精度。实验表明,该方法在所用数据集,准确率、召回率、F1 3种指标均达到90%以上。 展开更多
关键词 遥感影像 变化检测 ResNet18 unet 特征金字塔网络 FPN Res-unet模型
下载PDF
融合残差注意力机制的UNet视盘分割 被引量:25
3
作者 侯向丹 赵一浩 +3 位作者 刘洪普 郭鸿湧 于习欣 丁梦园 《中国图象图形学报》 CSCD 北大核心 2020年第9期1915-1929,共15页
目的青光眼和病理性近视等会对人的视力造成不可逆的损害,早期的眼科疾病诊断能够大大降低发病率。由于眼底图像的复杂性,视盘分割很容易受到血管和病变等区域的影响,导致传统方法不能精确地分割出视盘。针对这一问题,提出了一种基于深... 目的青光眼和病理性近视等会对人的视力造成不可逆的损害,早期的眼科疾病诊断能够大大降低发病率。由于眼底图像的复杂性,视盘分割很容易受到血管和病变等区域的影响,导致传统方法不能精确地分割出视盘。针对这一问题,提出了一种基于深度学习的视盘分割方法RA-UNet(residual attention UNet),提高了视盘分割精度,实现了自动、端到端的分割。方法在原始UNet基础上进行了改进。使用融合注意力机制的ResNet34作为下采样层来增强图像特征提取能力,加载预训练权重,有助于解决训练样本少导致的过拟合问题。注意力机制可以引入全局上下文信息,增强有用特征并抑制无用特征响应。修改UNet的上采样层,降低模型参数量,帮助模型训练。对网络输出的分割图进行后处理,消除错误样本。同时,使用DiceLoss损失函数替代普通的交叉熵损失函数来优化网络参数。结果在4个数据集上分别与其他方法进行比较,在RIM-ONE(retinal image database for optic nerve evaluation)-R1数据集中,F分数和重叠率分别为0.9574和0.9182,比UNet分别提高了2.89%和5.17%;在RIM-ONE-R3数据集中,F分数和重叠率分别为0.969和0.9398,比UNet分别提高了1.5%和2.78%;在Drishti-GS1数据集中,F分数和重叠率分别为0.9662和0.9345,比UNet分别提高了1.65%和3.04%;在iChallenge-PM病理性近视挑战赛数据集中,F分数和重叠率分别为0.9424和0.8911,分别比UNet提高了3.59%和6.22%。同时还在RIM-ONE-R1和Drishti-GS1中进行了消融实验,验证了改进算法中各个模块均有助于提升视盘分割效果。结论提出的RA-UNet,提升了视盘分割精度,对有病变区域的图像也有良好的视盘分割性能,同时具有良好的泛化性能。 展开更多
关键词 青光眼 unet 深度学习 视盘分割 预训练 注意力机制 DiceLoss
原文传递
基于深度学习UNet++网络的初至波拾取方法 被引量:24
4
作者 李薇薇 龚仁彬 +5 位作者 周相广 林霞 米兰 李宁 王晓东 肖高杰 《地球物理学进展》 CSCD 北大核心 2021年第1期187-194,共8页
初至波拾取是地震资料处理中一项基础而重要的工作.为解决我国西部沙漠、黄土塬、戈壁等地区地震资料信噪比低,致使初至波拾取准确率不高的难题.本文创新提出一种基于图像分割技术——UNet++神经网络应用于初至波智能拾取.输入原始地震... 初至波拾取是地震资料处理中一项基础而重要的工作.为解决我国西部沙漠、黄土塬、戈壁等地区地震资料信噪比低,致使初至波拾取准确率不高的难题.本文创新提出一种基于图像分割技术——UNet++神经网络应用于初至波智能拾取.输入原始地震数据及少量初至时间的标签数据进行监督学习,并建立UNet++模型,应用西部某工区地震数据测试,实验证明,UNet++模型性能稳定,炸药震源初至波拾取准确率达到98%,可控震源初至波拾取准确率达到98%.此外,本方法与商业软件、U-net网络的初至拾取对比表明,UNet++优势明显,具有准确率高,抗噪能力强,性能稳定、高效等特点. 展开更多
关键词 初至波 深度学习 unet++
原文传递
基于并行注意力UNet的裂缝检测方法 被引量:21
5
作者 刘凡 王君锋 +1 位作者 陈峙宇 许峰 《计算机研究与发展》 EI CSCD 北大核心 2021年第8期1718-1726,共9页
裂缝对公共设施而言存在着安全隐患,因此裂缝检测是公共设施进行维护的重要手段.由于裂缝图像中存在噪声、光线、阴影等因素干扰,神经网络在训练时极易被影响,导致预测结果出现偏差,降低预测效果.为减少这些干扰,设计了一个并行注意力机... 裂缝对公共设施而言存在着安全隐患,因此裂缝检测是公共设施进行维护的重要手段.由于裂缝图像中存在噪声、光线、阴影等因素干扰,神经网络在训练时极易被影响,导致预测结果出现偏差,降低预测效果.为减少这些干扰,设计了一个并行注意力机制,并将其嵌入到UNet网络的解码部分,进而提出了并行注意力UNet(parallel attention based UNet,PA-UNet).该方法分别从通道和空间2个维度加大裂缝特征权重以抑制干扰,然后对这2个维度生成的特征进行融合,以获得更具互补性的裂缝特征.为了验证该方法的有效性,选取了4个数据集进行实验,结果表明该方法较现有的主流方法,裂缝检测效果更加优异.同时,为了验证并行注意力机制的有效性,选取了4种注意力机制与其进行对比实验,结果表明并行注意力机制效果优于其他注意力机制. 展开更多
关键词 裂缝检测 并行注意力机制 unet 抑制干扰 互补性
下载PDF
基于UNet深度学习算法的东海大型漂浮藻类遥感监测 被引量:20
6
作者 李潇凡 王胜强 +4 位作者 翁轩 孙德勇 张海龙 焦红波 梁涵玮 《光学学报》 EI CAS CSCD 北大核心 2021年第2期12-20,共9页
基于语义分割神经网络UNet,利用GOCI(Geostationary Ocean Color Imager)卫星传感器数据,构建出能够有效提取大型漂浮藻类的深度学习模型,实现了对大型漂浮藻类信息端到端、像素到像素的分割识别。验证结果表明:所提出的深度学习模型对... 基于语义分割神经网络UNet,利用GOCI(Geostationary Ocean Color Imager)卫星传感器数据,构建出能够有效提取大型漂浮藻类的深度学习模型,实现了对大型漂浮藻类信息端到端、像素到像素的分割识别。验证结果表明:所提出的深度学习模型对验证集中大型漂浮藻类的平均识别精度达到88.54%;通过与传统的归一化植被指数法和替代型漂浮藻类指数法进行对比,发现基于UNet构建的大型漂浮藻类监测模型具有更高的准确率且受云的影响较小。利用UNet大型漂浮藻类提取模型的识别结果对2017年东海藻类暴发过程进行了分析,模型显示出很好的实用性。 展开更多
关键词 海洋光学 大型漂浮藻类 遥感监测 深度学习 语义分割 unet
原文传递
基于神经网络的磁瓦表面缺陷检测识别 被引量:19
7
作者 刘畅 张剑 林建平 《表面技术》 EI CAS CSCD 北大核心 2019年第8期330-339,共10页
目的针对传统算法提取磁瓦表面缺陷的局限性,以及通过人为选择缺陷特征进而判断缺陷种类的方法精度不足等问题,结合改进的UNet模型和一个分类神经网络提出一种磁瓦缺陷检测识别算法。方法改进的UNet模型用于提取缺陷,而分类神经网络则... 目的针对传统算法提取磁瓦表面缺陷的局限性,以及通过人为选择缺陷特征进而判断缺陷种类的方法精度不足等问题,结合改进的UNet模型和一个分类神经网络提出一种磁瓦缺陷检测识别算法。方法改进的UNet模型用于提取缺陷,而分类神经网络则用于对所提取的缺陷区域进行分类识别。为了提高模型的分类精度,使用空洞卷积对UNet模型部分卷积层和池化层进行替代,以减少多次池化带来的细节丢失的问题,同时,增加多次跳跃连接,使UNet模型能够融合更多的卷积特征。结果经实验验证表明,改进UNet模型对缺陷区域的预测精度可达到93%。根据预测结果使用分类神经网络对缺陷进行分类,经实验验证,分类的精度可达94%,满足工业要求。结论改进的UNet模型对磁瓦缺陷提取精度有所提高,分类神经网络的缺陷分类精度较高。结合改进的UNet模型和分类神经网络能同时并有效地实现缺陷提取和分类识别,为磁瓦质量检测和性能评估打下基础。 展开更多
关键词 磁瓦 表面缺陷 缺陷提取 缺陷分类识别 图像分割 unet
下载PDF
UNET与FPN相结合的遥感图像语义分割 被引量:18
8
作者 王曦 于鸣 任洪娥 《液晶与显示》 CAS CSCD 北大核心 2021年第3期475-483,共9页
针对传统的遥感图像分割方法效率低下,复杂场景下分割精细度不够,以及UNET模型对于图像中包含的较小目标以及较大目标的边缘分割效果不佳等问题,本文提出了一种UNET结构与FPN结构相结合的方法,提升UNET模型整合多尺度信息的能力,同时辅... 针对传统的遥感图像分割方法效率低下,复杂场景下分割精细度不够,以及UNET模型对于图像中包含的较小目标以及较大目标的边缘分割效果不佳等问题,本文提出了一种UNET结构与FPN结构相结合的方法,提升UNET模型整合多尺度信息的能力,同时辅以能更好地捕捉目标边缘的BLR损失函数,提升UNET模型对目标边界的分割效果。实验结果表明,本文所使用的方法有效提升了语义分割的精度,较好地缓解了对小尺度目标和大尺度目标边缘分割不佳的问题。该方法对目标边缘分割更精准,达到更好的分割效果。 展开更多
关键词 深度学习 unet FPN BLR
下载PDF
融合SKNet与YOLOv5深度学习的养殖鱼群检测 被引量:17
9
作者 赵梦 于红 +6 位作者 李海清 胥婧雯 程思奇 谷立帅 张鹏 韦思学 郑国伟 《大连海洋大学学报》 CAS CSCD 北大核心 2022年第2期312-319,共8页
为解决真实养殖环境下,水下成像模糊、失真等导致鱼群检测准确率低的问题,提出一种融合视觉注意力机制SKNet(selective kernel networks)与YOLOv5(you only look once)的养殖鱼群检测方法(SK-YOLOv5模型),该方法首先采用UNet(convolutio... 为解决真实养殖环境下,水下成像模糊、失真等导致鱼群检测准确率低的问题,提出一种融合视觉注意力机制SKNet(selective kernel networks)与YOLOv5(you only look once)的养殖鱼群检测方法(SK-YOLOv5模型),该方法首先采用UNet(convolutional networks for biomedical image segmentation)对图像进行预处理,得到清晰的鱼群图像,然后将SKNet融合到YOLOv5的Backbone端构成关注像素级信息的特征提取网络,加强对模糊鱼体的识别能力,并在水下模糊鱼群图像数据集上进行了消融试验和模型对比试验,以验证SK-YOLOv5的有效性。结果表明:在鱼群检测任务上,SK-YOLOv5的识别精确率和召回率分别达到了98.86%和96.64%,检测效果比YOLOv5分别提升了2.14%和2.29%,与目前检测准确率较高的水下目标检测模型XFishHmMp和FERNet相比,SK-YOLOv5取得了较好的检测效果,与XFishHmMp模型相比,识别精确率和召回率分别提升了5.39%和5.66%,与FERNet模型相比,识别精确率和召回率分别提升了3.59%和3.77%,实现了真实养殖环境下鱼群的准确检测。研究表明,融合SKNet与YOLOv5的养殖鱼群检测方法,有效地解决了水下模糊图像鱼群检测准确率低的问题,提升了养殖鱼群检测和识别的整体效果。 展开更多
关键词 鱼群检测 YOLOv5 unet SKNet 视觉注意力机制 深度学习
下载PDF
MPSPNet和UNet网络下山东省高分辨耕地遥感提取 被引量:15
10
作者 李倩楠 张杜娟 +1 位作者 潘耀忠 代佳佳 《遥感学报》 EI CSCD 北大核心 2023年第2期471-491,共21页
高分辨率遥感影像中耕地特征复杂,人工目视解译和传统的遥感影像分类方法提取能力有限,无法实现大范围的自动化高精度耕地提取。深度学习技术因具有较强的地物表达能力,在遥感影像信息自动提取方面表现出了优越的性能,为大范围耕地的精... 高分辨率遥感影像中耕地特征复杂,人工目视解译和传统的遥感影像分类方法提取能力有限,无法实现大范围的自动化高精度耕地提取。深度学习技术因具有较强的地物表达能力,在遥感影像信息自动提取方面表现出了优越的性能,为大范围耕地的精细化自动提取提供了新的思路。探究不同典型网络模型在不同景观特征耕地提取上的适用情况对耕地提取质量和效率的提升具有重要意义。基于此,本研究以高分一号及高分二号融合的2 m分辨率数据为数据源,采用改进的金字塔场景解析网络MPSPNet(Modified Pyramid Scene Parsing Network)和UNet网络模型,应用于山东省的耕地精细自动化提取,并与传统面向对象的方法对比,探究两种深度卷积神经网络模型在大尺度耕地自动提取中的适用性。研究获得以下结论:(1) MPSPNet模型和UNet模型在区/县尺度的耕地提取上性能优于传统的面向对象的分类方法,在全省尺度的耕地提取上总体精度优于90%且无明显差异。(2)耕地景观特征是影响两模型耕地提取效果的重要因素,模型的选择对耕地提取效果无明显影响。在耕地景观指数较低的地块规则平整的区域,模型提取效果较好,在耕地景观指数较高的地块破碎丘陵区域以及与耕地特征相近的地块区域,模型提取效果较差,并且UNet模型在这些区域误分耕地的概率更大。(3)两模型在不同区域、不同时相的影像中能得到较好的耕地提取效果,具有较强的泛化能力和时空迁移能力。 展开更多
关键词 耕地 遥感 卷积神经网络 MPSPNet unet
原文传递
融合型UNet++网络的超声胎儿头部边缘检测 被引量:13
11
作者 邢妍妍 杨丰 +1 位作者 唐宇姣 张利云 《中国图象图形学报》 CSCD 北大核心 2020年第2期366-377,共12页
目的超声胎儿头部边缘检测是胎儿头围测量的关键步骤,因胎儿头部超声图像边界模糊、超声声影造成图像中胎儿颅骨部分缺失、羊水及子宫壁形成与胎儿头部纹理及灰度相似的结构等因素干扰,给超声胎儿头部边缘检测及头围测量带来一定的难度... 目的超声胎儿头部边缘检测是胎儿头围测量的关键步骤,因胎儿头部超声图像边界模糊、超声声影造成图像中胎儿颅骨部分缺失、羊水及子宫壁形成与胎儿头部纹理及灰度相似的结构等因素干扰,给超声胎儿头部边缘检测及头围测量带来一定的难度。本文提出一种基于端到端的神经网络超声图像分割方法,用于胎儿头部边缘检测。方法以UNet++神经网络结构为基础,结合UNet++最后一层特征,构成融合型UNet++网络。训练过程中,为缓解模型训练过拟合问题,在每一卷积层后接一个空间dropout层。具体思路是通过融合型UNet++深度神经网络提取超声胎儿头部图像特征,通过胎儿头部区域概率图预测,输出胎儿头部语义分割的感兴趣区域。进一步获取胎儿的头部边缘关键点信息,并采用边缘曲线拟合方法拟合边缘,最终测量出胎儿头围大小。结果针对现有2维超声胎儿头围自动测量公开数据集HC18,以Dice系数、Hausdorff距离(HD)、头围绝对差值(AD)等指标评估本文模型性能,结果Dice系数为98.06%,HD距离为1.21±0.69 mm,头围测量AD为1.84±1.73 mm。在妊娠中期测试数据中,Dice系数为98.24%,HD距离为1.15±0.59 mm,头围测量AD为1.76±1.55 mm。在生物医学图像分析平台Grand Challenge上HC18数据集已提交结果中,融合型UNet++的Dice系数排在第3名,HD排在第2名,AD排在第10名。结论与经典超声胎儿头围测量方法及已有的机器学习方法应用研究相比,融合型UNet++能有效克服超声边界模糊、边缘缺失等干扰,精准分割出胎儿头部感兴趣区域,获取边缘关键点信息。与现有神经网络框架相比,融合型UNet++能充分利用上下文相关信息与局部定位功能,在妊娠中期的头围测量中,本文方法明显优于其他方法。 展开更多
关键词 医学图像分割 unet++ 胎儿头部边缘检测 胎儿头围测量 深度学习 超声图像
原文传递
基于深度学习的红外遥感信息自动提取 被引量:13
12
作者 陈睿敏 孙胜利 《红外》 CAS 2017年第8期37-43,共7页
为了提高红外遥感图像地物信息自动提取的精确性,同时避免人工提取遥感信息的低效性,提出了一种基于UNet深度学习模型的遥感信息提取算法。该算法用于从红外遥感图像中分割出5类地物信息(包括道路、建筑、树木、农田和水体)。首先,对分... 为了提高红外遥感图像地物信息自动提取的精确性,同时避免人工提取遥感信息的低效性,提出了一种基于UNet深度学习模型的遥感信息提取算法。该算法用于从红外遥感图像中分割出5类地物信息(包括道路、建筑、树木、农田和水体)。首先,对分辨率高但数量较少的训练数据进行小像幅的随机裁剪,并对其进行相应的数据增强处理。然后搭建UNet深度学习模型,并用它自动提取遥感图像的特征信息。采用交叉熵损失函数以及Adam反向传播优化算法对该模型进行训练,并对测试样本中的5幅遥感图像进行精确的地物信息提取。最后,运用Jaccard指数对测试结果进行精度评定。实验结果表明,该方法对高分辨率红外遥感图像信息和可见光遥感图像信息进行了充分融合,对于不同种类地物的定位和分类都取得了较高精度。 展开更多
关键词 深度学习 unet 语义分割 多光谱遥感
下载PDF
MS-UNet++:基于改进UNet++的视网膜血管分割 被引量:12
13
作者 殷宁波 黄冕 +1 位作者 刘利军 黄青松 《光电子.激光》 EI CAS CSCD 北大核心 2021年第1期35-41,共7页
本文针对视网膜图像中细微血管特征提取困难导致其分割难度高等问题,提出了一种基于端到端的神经网络嵌套视网膜血管分割模型算法(简称MS-UNet++),该算法选取了深度监督网络UNet++作为分割网络模型,提升特征的使用效率;引入MulitRes模块... 本文针对视网膜图像中细微血管特征提取困难导致其分割难度高等问题,提出了一种基于端到端的神经网络嵌套视网膜血管分割模型算法(简称MS-UNet++),该算法选取了深度监督网络UNet++作为分割网络模型,提升特征的使用效率;引入MulitRes模块,改善低对比度环境下细小血管的特征学习效果,并在特征提取后加上SENet模块进行挤压和激励操作,从而增强特征提取阶段的感受野,提高目标相关特征通道的权重。基于DRIVE图像数据集的实验结果表明,该算法分割结果与真实结果之间的重叠率DICE值为83.64%,并交比IOU为94.83%,准确度ACC为96.79%,灵敏度SE为81.78%,较现有模型有一定的提升,可用于视网膜图像血管分割,为临床诊断提供辅助信息。 展开更多
关键词 视网膜血管 unet++ MultiRes SENet 图像分割
原文传递
联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测 被引量:10
14
作者 王超 王帅 +2 位作者 陈晓 李俊勇 谢涛 《测绘学报》 EI CSCD 北大核心 2023年第2期283-296,共14页
随着传感器技术的飞速发展,基于多源光学遥感影像的变化检测已成为遥感领域中的研究热点。由于传感器成像差异,同一景象在多源光学遥感影像中通常呈现出不同的表现形式,因此面临着更加突出的“伪变化”问题。为此,本文提出了一种联合UNe... 随着传感器技术的飞速发展,基于多源光学遥感影像的变化检测已成为遥感领域中的研究热点。由于传感器成像差异,同一景象在多源光学遥感影像中通常呈现出不同的表现形式,因此面临着更加突出的“伪变化”问题。为此,本文提出了一种联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测方法。该方法首先提出了一种多尺度特征提取差分(multi-scale feature extraction difference,MFED)模块,以增强模型对“伪变化”的识别能力;在此基础上,利用UNet++网络输出的多尺度特征对变化区域进行多角度精细刻画,并提出了一种自适应证据置信度指标(adaptive evidence credibility indicators,AECI);最后结合影像分割与Dempster-Shafer(DS)理论设计了加权DS证据融合策略(weighted dempster shafer evidence fusion,WDSEF),从而实现了深度网络像素级输出至对象级结果的映射。通过对不同地区的4组高分多源光学影像数据集进行试验,并与多种先进的深度学习方法进行对比分析,结果表明:在不同空间分辨率和时相差异条件下,本文方法的总体精度(overall accuracy,OA)和F 1 score分别可达91.92%和63.31%以上,在目视分析和定量评价均显著优于对比方法。 展开更多
关键词 多源光学遥感影像 变化检测 unet++ 多尺度特征提取差分 自适应证据信度指标 加权DS证据融合
下载PDF
基于UNet网络的乳腺癌肿瘤细胞图像分割 被引量:10
15
作者 徐思则 刘威 《电子设计工程》 2022年第12期63-66,73,共5页
乳腺癌肿瘤细胞(MCF-7)的研究对乳腺癌的诊断和治疗具有重要意义。相比其他的语义分割模型,UNet网络在医学影像领域具有更加优秀的表现。为了将人工智能技术用于辅助诊断,该文结合深度学习和卷积神经网络理论,搭建了基于UNet卷积神经网... 乳腺癌肿瘤细胞(MCF-7)的研究对乳腺癌的诊断和治疗具有重要意义。相比其他的语义分割模型,UNet网络在医学影像领域具有更加优秀的表现。为了将人工智能技术用于辅助诊断,该文结合深度学习和卷积神经网络理论,搭建了基于UNet卷积神经网络的乳腺癌肿瘤细胞分割模型。该文使用CMOS相机采集混有人体红细胞的乳腺癌肿瘤细胞图像,通过labelme软件对采集的细胞图像进行轮廓标注等处理,提取出细胞区域,使用UNet神经网络训练并测试。结果表明,肿瘤细胞图像分割准确率达到91%,精准率达到89%。 展开更多
关键词 卷积神经网络 unet 乳腺癌肿瘤细胞 图像分割
下载PDF
LRUNet:轻量级脑肿瘤快速语义分割网络 被引量:12
16
作者 何康辉 肖志勇 《中国图象图形学报》 CSCD 北大核心 2021年第9期2233-2242,共10页
目的针对目前基于深度学习的脑肿瘤分割算法参数量大、计算复杂和快速性差的问题,提出了一种超轻量级快速语义分割网络LRUNet(lightweight rapid UNet),在保证分割精度提升的同时,极大地减少了网络的参数量与计算量,达到快速分割的效果... 目的针对目前基于深度学习的脑肿瘤分割算法参数量大、计算复杂和快速性差的问题,提出了一种超轻量级快速语义分割网络LRUNet(lightweight rapid UNet),在保证分割精度提升的同时,极大地减少了网络的参数量与计算量,达到快速分割的效果。方法 LRUNet网络结构基于UNet,将3D-UNet的通道数减少为原来的1/4,减少原先3D-UNet过多的参数量;将UNet网络中除最后一层外的所有传统卷积变为深度可分离卷积,深度可分离卷积以牺牲极少精度,大大减少网络参数量,实现网络的轻量级;使用空间—通道压缩和激发模块(spatial and channel squeeze&excitation block, sc SE),该模块能够放大特征图中对模型有利的参数的权重,缩小对模型不利参数的权重,提升网络分割的精度。结果在Bra TS 2018(Brain Tumor Segmentation Challenge 2018)数据集上的在线验证结果显示,该模型在全肿瘤、核心区肿瘤和增强区肿瘤分割的平均Dice系数分别为0.893 6、0.804 6和0.787 2。LRUNet与同为轻量级网络的S3D-UNet相比Dice有所提升,但是,参数量仅为S3D-UNet的1/4,FLOPs(floating point operations per second)仅为1/2。结论与3D-UNet、S3D-UNet和3D-ESPNet等算法相比,LRUNet算法不仅保证精度得到提升,而且极大地减少网络中计算的参数量与计算成本消耗,同时网络模型的预测速度得到很大提升,使得快速语义分割在3维医学图像领域成为可能。 展开更多
关键词 3维图像处理 全卷积网络 磁共振成像 快速语义分割 U型网络
原文传递
Res_ASPP_UNet++:结合分离卷积与空洞金字塔的遥感影像建筑物提取网络 被引量:8
17
作者 吕少云 李佳田 +3 位作者 阿晓荟 杨超 杨汝春 尚晓梅 《遥感学报》 EI CSCD 北大核心 2023年第2期502-519,共18页
针对连续池化操作丢失低层语义信息而导致建筑物提取精度低的问题,尝试以UNet++网络为基础,通过将编码器的标准卷积及最大池化替换成深度可分离卷积,以及在编码器末端利用不同采样率的空洞卷积构建多尺度空洞空间金字塔池化结构ASPP(Atr... 针对连续池化操作丢失低层语义信息而导致建筑物提取精度低的问题,尝试以UNet++网络为基础,通过将编码器的标准卷积及最大池化替换成深度可分离卷积,以及在编码器末端利用不同采样率的空洞卷积构建多尺度空洞空间金字塔池化结构ASPP(Atrous Spatial Pyramid Pooling)来提升网络性能,并将改进后的建筑物提取网络称为残差空洞空间金字塔网络(Res_ASPP_UNet++)。为验证Res_ASPP_UNet++网络结构的有效性和适用性,以经过数据增强预处理的WHU和Massachusetts数据集作为数据源,对Res_ASPP_UNet++网络与目前常用的语义分割网络进行了试验和精度评估,并将Res_ASPP_UNet++网络与文献中的研究成果进行了对比。结果表明Res_ASPP_UNet++在模型参数量与精度两个方面均表现出优势,能够在大幅压缩模型参数量的前提下,显著提升建筑物提取精度,提取建筑物的边界更加平滑和精确,对不同尺度的建筑物表现出较强的泛化能力。 展开更多
关键词 遥感影像 建筑物提取 unet++ 深度可分离卷积 深度残差结构 空洞空间金字塔池化
原文传递
基于PRCUnet的高分遥感影像建筑物提取 被引量:9
18
作者 徐佳伟 刘伟 +4 位作者 单浩宇 史嘉诚 李二珠 张连蓬 李行 《地球信息科学学报》 CSCD 北大核心 2021年第10期1838-1849,共12页
基于高分辨率遥感影像的建筑物提取具有重要的理论与实际应用价值,深度学习因其优异的深层特征提取能力,已经成为高分影像提取建筑物的主流方法之一。本文在改进深度学习网络结构的基础上,结合最小外接矩形与Hausdorff距离概念,对建筑... 基于高分辨率遥感影像的建筑物提取具有重要的理论与实际应用价值,深度学习因其优异的深层特征提取能力,已经成为高分影像提取建筑物的主流方法之一。本文在改进深度学习网络结构的基础上,结合最小外接矩形与Hausdorff距离概念,对建筑物提取方法进行改进。本文主要改进内容为:①基于Unet网络结构,利用金字塔池化模块(Pyramid Pooling Module,PPM)的多尺度场景解析特点,残差模块(Residual Block,RB)的特征提取能力以及卷积块注意力模块(Convolutional Block Attention Module,CBAM)对空间信息和通道信息的平衡能力。将金字塔池化、残差结构以及卷积块注意力模块引入到Unet模型中,建立PRCUnet模型。PRCUnet模型更关注语义信息和细节信息,弥补Unet对小目标检测的欠缺;②基于最小外接矩形与Hausdorff距离,改进建筑物轮廓优化算法,提高模型的泛化能力。实验表明,本文的建筑物提取方法在测试集上准确率、IoU、召回率均达到0.85以上,精度显著优于Unet模型,提取出的建筑物精度更高,对小尺度及不规则的建筑物有较好的提取效果,优化后的建筑物轮廓更接近真实的建筑物边界。 展开更多
关键词 深度卷积神经网络 高分辨率遥感影像 建筑物提取 unet 池化金字塔 残差路径 卷积块注意力机制 建筑物轮廓优化
原文传递
改进型Unet网络在脑CT图像出血区域识别与分割中的应用 被引量:7
19
作者 周正松 陈旭淼 +4 位作者 张皞宇 万红丽 赵杰祎 张韬 王晓宇 《四川大学学报(医学版)》 CAS CSCD 北大核心 2022年第1期114-120,共7页
目的探讨改进型Unet网络技术对脑CT图像出血区域识别与分割的性能及其应用价值。方法回顾性纳入476份自发性脑出血(spontaneous intracerebral hemorrhage,SICH)患者的脑CT图像,采用基于改进型Unet网络对患者脑CT图像出血区域进行识别... 目的探讨改进型Unet网络技术对脑CT图像出血区域识别与分割的性能及其应用价值。方法回顾性纳入476份自发性脑出血(spontaneous intracerebral hemorrhage,SICH)患者的脑CT图像,采用基于改进型Unet网络对患者脑CT图像出血区域进行识别和分割,由临床医生手动标注出血区域的影像数据,通过随机排序后,选取来自106例患者的430份数据进入训练集,11例患者的46份数据进入测试集,实验数据集通过数据增强后,经过网络训练和模型测试,以检验分割性能,并将分割结果与Unet网络(Base)、FCN-8s和Unet++网络进行对比。结果改进型Unet网络对脑CT图像出血区域的分割中,相似性系数(Dice)、正向预测系数(PPV)、灵敏度系数(SC)三项评价指标分别达到0.8738、0.9011和0.8648,相较于FCN-8s网络分别提升8.80%、7.14%和8.96%,相较于Unet网络(Base)分别提升4.56%、4.44%和4.15%,同时优于Unet++网络的分割性能。结论本文提出的基于Unet网络的改进方法对脑CT出血区域的识别和分割具有良好的性能,是一种脑CT出血区域识别和分割的适用方法,对于辅助临床决策和预防早期血肿扩张具有潜在应用价值。 展开更多
关键词 自发性脑出血 出血区域 CT图像 unet
原文传递
基于语义分割网络的小样本表面缺陷检测 被引量:7
20
作者 张晴晴 史健芳 《电子设计工程》 2021年第5期180-184,189,共6页
传统工业产品表面缺陷的检测很多时候都依赖于人工肉眼去识别,这严重降低了产品的生产速度,在一定程度上阻碍了社会生产力的进步。为了提高检测效果,降低人工成本,提出了一种基于语义分割网络UNet的小样本表面缺陷检测方法,该方法在UNe... 传统工业产品表面缺陷的检测很多时候都依赖于人工肉眼去识别,这严重降低了产品的生产速度,在一定程度上阻碍了社会生产力的进步。为了提高检测效果,降低人工成本,提出了一种基于语义分割网络UNet的小样本表面缺陷检测方法,该方法在UNet网络基础上作了两个方面的改进,在UNet网络基础上加入BN层,将UNet网络和残差网络结合起来,在UNet网络的下采样过程中,加入残差块结构,并分别对加入3、5、7个残差块的检测效果进行了验证实验。实验结果表明,UNet网络加入BN层后的分割检测效果有一定的提高,加入残差块之后,网络缺陷检测效果得到进一步的提升。 展开更多
关键词 深度学习 分割网络 缺陷检测 unet 残差网络
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部