期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种超模糊熵ULPCNN图像自动分割新方法 被引量:5
1
作者 刘勍 许录平 +2 位作者 马义德 苏哲 王勇 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第5期817-824,共8页
为了自动地对图像进行二值分割,提出了一种新的自适应迭代全局阈值图像分割算法.首先对二维超模糊集隶属函数进行了自适应修正,并将其引入到图像超模糊熵概念中;然后从适应图像分割角度,将传统脉冲耦合神经网络模型改进为具有单调指数... 为了自动地对图像进行二值分割,提出了一种新的自适应迭代全局阈值图像分割算法.首先对二维超模糊集隶属函数进行了自适应修正,并将其引入到图像超模糊熵概念中;然后从适应图像分割角度,将传统脉冲耦合神经网络模型改进为具有单调指数上升阈值函数的ULPCNN抑制捕获模型;最后把ULPCNN与最大超模糊熵判据相结合对图像进行自动分割,并与基于最大香农熵、最小交叉熵及最小模糊熵准则的ULPCNN分割方法作了比较.理论分析和实验结果表明,该方法能自动确定迭代次数和选取最佳阈值,对图像目标划分清晰,细节保持较好,改善了图像的分割性能. 展开更多
关键词 图像分割 最大超模糊熵 ulpcnn 阈值函数 抑制捕获
下载PDF
一种基于自适应单位链接PCNN的图像融合方法 被引量:1
2
作者 刘勍 董忠 +1 位作者 温志贤 马义德 《测控技术》 CSCD 北大核心 2011年第12期12-15,共4页
在充分考虑图像局部信息的基础上,提出了一种基于自适应Unit-Linking PCNN赋时矩阵的图像融合算法。首先对ULPCNN阈值函数进行修正改进,并以每个像素的局部离散系数作为其链接强度,形成无连接和自适应连接ULPCNN;其次对各源图像并行进行... 在充分考虑图像局部信息的基础上,提出了一种基于自适应Unit-Linking PCNN赋时矩阵的图像融合算法。首先对ULPCNN阈值函数进行修正改进,并以每个像素的局部离散系数作为其链接强度,形成无连接和自适应连接ULPCNN;其次对各源图像并行进行ULPCNN处理,得到既能体现图像中单个像素特征,又能反映其邻域像素信息的非线性映射赋时矩阵;最后通过对赋时矩阵中诸像素及其邻域局部特征进行自适应统计判断,从而确定对源图像进行相关融合处理。理论分析和实验仿真表明,本方法极大地降低了PCNN参数多且设定难的问题,自动地提高了PCNN对图像融合处理的性能,融合图像较好地集中了源图像的丰富特征信息,融合细节清晰,视觉效果较好,融合质量优于主分量分析及Laplacian金字塔方法。 展开更多
关键词 图像融合 ulpcnn 离散系数 链接强度 赋时矩阵
下载PDF
结合改进Laplacian能量和参数自适应双通道ULPCNN的遥感影像融合方法
3
作者 龚循强 侯昭阳 +3 位作者 吕开云 鲁铁定 夏元平 李威俊 《测绘学报》 EI CSCD 北大核心 2023年第11期1892-1905,共14页
融合SAR影像的后向散射信息和光学影像的光谱信息是提高土地覆盖分类精度的重要手段之一,其中多尺度变换是一种有效的融合方法。然而,多尺度变换方法的融合规则通常根据局部特征信息和脉冲耦合神经网络模型进行设计,存在结构信息和细节... 融合SAR影像的后向散射信息和光学影像的光谱信息是提高土地覆盖分类精度的重要手段之一,其中多尺度变换是一种有效的融合方法。然而,多尺度变换方法的融合规则通常根据局部特征信息和脉冲耦合神经网络模型进行设计,存在结构信息和细节信息提取能力有限,以及脉冲耦合神经网络参数设置复杂和空间相关性差等问题。为此,本文提出一种结合改进Laplacian能量和参数自适应双通道单位连接脉冲耦合神经网络(ULPCNN)的遥感影像融合方法。该方法混合成分替换方法和多尺度变换方法,首先对多光谱影像进行IHS变换得到亮度分量I,将亮度分量I与SAR影像通过非下采样剪切波变换(NSST)分解得到高低频子带。然后对低频子带采用结合加权局部能量和八邻域修正拉普拉斯加权和的融合规则,同时对高频子带采用参数自适应双通道ULPCNN的融合规则,将高频子带的多尺度形态梯度作为链接强度,并根据OTSU阈值和影像强度来实现其他参数的自适应表示。最后依次进行NSST重建和IHS逆变换得到融合影像,并选择随机森林分类器对融合影像进行土地覆盖分类。试验结果表明,本文方法相较于13种其他方法在11个融合评价指标和土地覆盖分类精度上总体表现最佳,土地覆盖分类的总体精度和Kappa系数在区域1中比原多光谱影像分别提高了8.350%和0.107,在区域2中比原多光谱影像分别提高了6.896%和0.091。 展开更多
关键词 遥感影像融合 参数自适应双通道ulpcnn 非下采样剪切波变换 改进Laplacian能量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部