Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematic...Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematical model,the characteristics of heterogeneous flocking is analyzed in detail.Two key issues are considered in multi-UGV subgroups,which are Reynolds Rule and Virtual Leader(VL).Receding Horizon Control(RHC) with Particle Swarm Optimization(PSO) is proposed for multiple UGVs flocking,and velocity vector control approach is adopted for multiple UAVs flocking.Then,multiple UAVs and UGVs heterogeneous tracking can be achieved by these two approaches.The feasibility and effectiveness of our proposed method are verified by comparative experiments with artificial potential field method.展开更多
This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission...This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 60975072 and 60604009)Aeronautical Science Foundation of China (Grant No. 2008ZC01006)+4 种基金Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0021)the Fundamental Research Funds for the Central Universities of China (Grant No. YWF-10-01-A18)Beijing NOVA Program Foundation (Grant No. 2007A017)open Fund of the State Key Laboratory of Virtual Reality Technology and SystemsOpen Fund of the Provincial Key Laboratory for Information Processing Technology, Suzhou University, China (Grant No. KJS1020)
文摘Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematical model,the characteristics of heterogeneous flocking is analyzed in detail.Two key issues are considered in multi-UGV subgroups,which are Reynolds Rule and Virtual Leader(VL).Receding Horizon Control(RHC) with Particle Swarm Optimization(PSO) is proposed for multiple UGVs flocking,and velocity vector control approach is adopted for multiple UAVs flocking.Then,multiple UAVs and UGVs heterogeneous tracking can be achieved by these two approaches.The feasibility and effectiveness of our proposed method are verified by comparative experiments with artificial potential field method.
基金supported by the National Natural Science Foundation of China(7140104871671059)the National Natural Science Funds of China for Innovative Research Groups(71521001)
文摘This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.