为了提高无人机基站(unmanned aerial vehicle base stations,UAV-BS)为地面多用户服务时的数据速率,提出一种基于决斗深度神经网络(dueling deep Q-network,Dueling-DQN)的深度强化学习(deep reinforcement learning,DRL)算法。采用决...为了提高无人机基站(unmanned aerial vehicle base stations,UAV-BS)为地面多用户服务时的数据速率,提出一种基于决斗深度神经网络(dueling deep Q-network,Dueling-DQN)的深度强化学习(deep reinforcement learning,DRL)算法。采用决斗网络(dueling network,DN)结构以克服动态环境的部分可观测问题,联合优化了UAV-BS的位置和下行链路功率分配,在更符合实际的空地概率信道模型中检验了Dueling-DQN算法的性能。结果表明,相较于对比算法,所提出的Dueling-DQN算法可以提供更高的数据速率和服务公平性,且随着地面用户数量的增大,算法的优势更加明显。Dueling-DQN算法可有效解决复杂非凸性问题,为UAV-BS的资源分配问题提供理论参考。展开更多
文摘为了提高无人机基站(unmanned aerial vehicle base stations,UAV-BS)为地面多用户服务时的数据速率,提出一种基于决斗深度神经网络(dueling deep Q-network,Dueling-DQN)的深度强化学习(deep reinforcement learning,DRL)算法。采用决斗网络(dueling network,DN)结构以克服动态环境的部分可观测问题,联合优化了UAV-BS的位置和下行链路功率分配,在更符合实际的空地概率信道模型中检验了Dueling-DQN算法的性能。结果表明,相较于对比算法,所提出的Dueling-DQN算法可以提供更高的数据速率和服务公平性,且随着地面用户数量的增大,算法的优势更加明显。Dueling-DQN算法可有效解决复杂非凸性问题,为UAV-BS的资源分配问题提供理论参考。