期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
U-net模型在高分辨率遥感影像水体提取中的应用 被引量:18
1
作者 王宁 程家骅 +2 位作者 张寒野 曹红杰 刘军 《国土资源遥感》 CSCD 北大核心 2020年第1期35-42,共8页
选择安徽省巢湖流域为研究区,采用U-net模型和随机森林模型,对高分一号(GF-1)高分辨率遥感影像进行水体信息提取,并对比分析了2种模型的水体提取结果和效率。结果表明:①对于大面积水体,2种模型的水体提取结果均具有较高的精度;②对于... 选择安徽省巢湖流域为研究区,采用U-net模型和随机森林模型,对高分一号(GF-1)高分辨率遥感影像进行水体信息提取,并对比分析了2种模型的水体提取结果和效率。结果表明:①对于大面积水体,2种模型的水体提取结果均具有较高的精度;②对于小面积水体,随机森林模型水体提取结果存在较多细碎图斑,U-net模型水体提取结果和人工目视解译结果更加符合;③对于遥感影像中城市建筑物阴影和山体阴影,U-net模型能较好地消除阴影影响,正确提取水体,而随机森林模型存在较多将阴影误分为水体的现象;④总体来看,在复杂地表覆盖类型条件下,U-net模型提取水体的总体精度为98. 69%,Kappa系数为0. 95,均高于随机森林模型,在2种模型漏分误差相当的情况下,U-net模型错分误差远小于随机森林模型。U-net模型避免了人工提取分类特征的过程,自动化程度更高,训练效率较高,适用于遥感影像中水体高精度提取。 展开更多
关键词 GF-1 u-net模型 随机森林 水体提取
下载PDF
基于卷积神经网络的臂丛神经超声图像分割方法 被引量:16
2
作者 龙法宁 朱晓姝 甘井中 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第9期1191-1195,1296,共6页
近几年卷积神经网络(convolutional neural network,CNN)在图像处理、语音识别、自然语言处理以及信息检索等领域得到广泛应用,颈部臂丛神经超声图像具有较低的信噪比、较低的对比度、模糊的边缘,其分割是一项富有挑战性的工作。文章针... 近几年卷积神经网络(convolutional neural network,CNN)在图像处理、语音识别、自然语言处理以及信息检索等领域得到广泛应用,颈部臂丛神经超声图像具有较低的信噪比、较低的对比度、模糊的边缘,其分割是一项富有挑战性的工作。文章针对目前臂丛神经超声图像手工标注的训练样本较少的情况,对U-Net模型进行改进,构建了一个适用于臂丛神经分割的卷积神经网络模型QU-Net,并选择BP图像数据库进行训练、测试。实验结果表明,与主流神经卷积网络分割算法SegNet、U-Net相比,QU-Net的图像分割结果具有更高的准确性。 展开更多
关键词 臂丛神经 图像分割 卷积神经网络(CNN) 深度学习 u-net模型
下载PDF
基于U-net模型的全自动鼻咽肿瘤MR图像分割 被引量:15
3
作者 潘沛克 王艳 +1 位作者 罗勇 周激流 《计算机应用》 CSCD 北大核心 2019年第4期1183-1188,共6页
鼻咽肿瘤生长方向不确定,解剖结构复杂,当前主要依靠医生手动分割,该方法耗时久同时严重依赖于医生的经验。针对这一问题,基于深度学习理论,提出一种基于U-net模型的全自动鼻咽肿瘤MR图像分割算法,利用卷积操作替换原始U-net模型中的最... 鼻咽肿瘤生长方向不确定,解剖结构复杂,当前主要依靠医生手动分割,该方法耗时久同时严重依赖于医生的经验。针对这一问题,基于深度学习理论,提出一种基于U-net模型的全自动鼻咽肿瘤MR图像分割算法,利用卷积操作替换原始U-net模型中的最大池化操作以减少特征信息的损失。首先,从所有患者的肿瘤切片中提取大小为128×128的区域作为数据样本;然后,将患者样本分为训练样本集和测试样本集,并对训练样本集进行数据扩充;最后,选择训练样本集中所有数据用于训练网络模型。为了验证所提模型的有效性,选取测试样本集中患者的所有肿瘤切片进行分割,最终平均分割精度可达到:DSC(Dice Similarity Coefficient)为80.05%,PM系数为85.7%,CR系数为71.26%,ASSD(Average Symmetric Surface Distance)指标为1.156 8。与基于图像块的卷积神经网络(CNN)相比,所提算法DSC,PM(Prevent Match)、CR(Correspondence Ratio)系数分别提高了9.86个百分点、19.61个百分点、16.02个百分点,ASSD指标下降了0.436 4;与全卷积神经网络(FCN)模型及基于最大池化的U-net网络相比,所提算法的DSC、CR系数均取得了最优结果,PM系数较两种对比模型中的最大值低2.55个百分点,ASSD指标较两种对比模型中的最小值略高出0.004 6。实验结果表明,所提算法针对鼻咽肿瘤图像可以实现较好的自动化分割效果以辅助医生进行诊断。 展开更多
关键词 鼻咽肿瘤 医学图像分割 深度学习模型 端到端模型 u-net模型
下载PDF
深度学习U-Net方法及其在高分辨卫星影像分类中的应用 被引量:12
4
作者 杨瑞 祁元 苏阳 《遥感技术与应用》 CSCD 北大核心 2020年第4期767-774,共8页
高分辨率遥感影像有精确的几何结构和空间布局,但是光谱信息有限,增大了对光谱特征相似地物的分类难度。针对高分辨率遥感影像分类的问题,采用深度学习U-Net模型分类方法。基于黑河下游额济纳绿洲高分二号遥感影像,通过U-Net模型提取胡... 高分辨率遥感影像有精确的几何结构和空间布局,但是光谱信息有限,增大了对光谱特征相似地物的分类难度。针对高分辨率遥感影像分类的问题,采用深度学习U-Net模型分类方法。基于黑河下游额济纳绿洲高分二号遥感影像,通过U-Net模型提取胡杨、柽柳、耕地、草地和裸地五种地物覆被类型,分类总体精度和Kappa系数分别为85.024%和0.7956,并与传统的支持向量机(SVM,Support Vector Machine)和面向对象的分类方法比较,结果表明:相对于SVM和面向对象,基于U-Net模型的高分辨率卫星影像地物覆被分类,能够更好地对地物本质特征进行提取,分类效果较好,满足精度要求。 展开更多
关键词 深度学习 u-net模型 高分二号遥感影像 SVM 分类
原文传递
基于分水岭修正与U-Net的肝脏图像分割算法 被引量:11
5
作者 亢洁 丁菊敏 +1 位作者 万永 雷涛 《计算机工程》 CAS CSCD 北大核心 2020年第1期255-261,270,共8页
在利用卷积神经网络分割肝脏边界较模糊的影像数据时容易丢失位置信息,导致分割精度较低。针对该问题,提出一种基于分水岭修正与U-Net模型相结合的肝脏图像自动分割算法。利用U-Net分层学习图像特征的优势,将浅层特征与深层语义特征相融... 在利用卷积神经网络分割肝脏边界较模糊的影像数据时容易丢失位置信息,导致分割精度较低。针对该问题,提出一种基于分水岭修正与U-Net模型相结合的肝脏图像自动分割算法。利用U-Net分层学习图像特征的优势,将浅层特征与深层语义特征相融合,避免丢失目标位置等细节信息,得到肝脏初始分割结果。在此基础上,通过分水岭算法形成的区域块对肝脏初始分割结果的边界进行修正,以获得边界平滑精确的分割结果。实验结果表明,与传统的图割算法和全卷积神经网络算法相比,该算法能够实现更为精准的肝脏图像分割。 展开更多
关键词 肝脏图像分割 卷积神经网络 u-net模型 分水岭算法 边界修正
下载PDF
基于深度卷积神经网络的地震数据溶洞识别 被引量:9
6
作者 闫星宇 李宗杰 +3 位作者 顾汉明 陈本池 邓光校 刘军 《石油地球物理勘探》 EI CSCD 北大核心 2022年第1期1-11,I0001,共12页
溶洞识别对于缝洞型油气藏的勘探与开发具有重要意义。传统溶洞识别方法多解性强且效率低,因此将具有强特征学习能力、高泛化性的深度学习方法引入溶洞识别中,但溶洞的地震波场响应特征复杂、异常体尺寸较小、训练样本难以获取等导致深... 溶洞识别对于缝洞型油气藏的勘探与开发具有重要意义。传统溶洞识别方法多解性强且效率低,因此将具有强特征学习能力、高泛化性的深度学习方法引入溶洞识别中,但溶洞的地震波场响应特征复杂、异常体尺寸较小、训练样本难以获取等导致深度学习在识别溶洞时仍具挑战性。为此,提出一套识别地震数据溶洞的"两步法"深度学习方法:首先通过U-Net模型识别地震剖面上的"串珠状"异常反射;再根据"串珠状"异常识别结果对地震数据进行小范围截取,输入深度残差网络中,实现对实际溶洞轮廓的预测。对于实际溶洞预测训练数据难以获取这一问题,采用波动方程正演模拟的方法制作具有准确标签的溶洞地震数据。实际地震数据的应用表明,该方法对于溶洞识别准确性高,抗噪能力强,可以极大地节约人工解释成本。 展开更多
关键词 缝洞型油气藏 溶洞识别 深度学习 u-net模型 深度残差网络
下载PDF
基于改进U-Net的肺野分割算法 被引量:8
7
作者 易三莉 王天伟 +2 位作者 杨雪莲 佘芙蓉 贺建峰 《激光与光电子学进展》 CSCD 北大核心 2022年第2期167-175,共9页
针对受肺肩区域、胸膈角及肋骨影响的胸部肺野分割问题,提出了一种基于改进U-Net的肺野分割算法。首先,用inception模块代替U-Net编码块中的卷积层,在增加网络宽度的同时捕获更多的图像特征。然后,在编码块与解码块中引入残差网络,提升... 针对受肺肩区域、胸膈角及肋骨影响的胸部肺野分割问题,提出了一种基于改进U-Net的肺野分割算法。首先,用inception模块代替U-Net编码块中的卷积层,在增加网络宽度的同时捕获更多的图像特征。然后,在编码块与解码块中引入残差网络,提升网络深度的同时保证网络稳定;在编码与解码之间用跳跃连接增强特征的传递和利用,解决编码部分连续下采样中的胸部肺野特征丢失问题。最后,在编码与解码部分结合通道和空间注意力机制对图像特征进行重标定,有效提高了算法的分割精度。实验结果表明,相比其他分割算法,本算法的分割性能更好,在公开Montgomery County数据集上的准确率、召回率、特异性、平均交并比分别为98.90%、97.81%、99.28%、97.17%。 展开更多
关键词 图像处理 肺野分割 inception模块 残差模块 跳跃连接 u-net模型
原文传递
改进U-Net的高分影像建筑物提取方法 被引量:9
8
作者 卢彻 徐胜华 朱军 《测绘科学》 CSCD 北大核心 2021年第12期140-146,共7页
针对高分辨率遥感影像中普遍存在的同谱异物和同物异谱现象以及传统全卷积神经网络随网络层数增加导致的梯度消失等问题,该文提出了基于改进U-Net的高分辨率遥感影像建筑物提取方法。利用残差思想对U-Net网络结构进行优化,采用Adam优化... 针对高分辨率遥感影像中普遍存在的同谱异物和同物异谱现象以及传统全卷积神经网络随网络层数增加导致的梯度消失等问题,该文提出了基于改进U-Net的高分辨率遥感影像建筑物提取方法。利用残差思想对U-Net网络结构进行优化,采用Adam优化器进行参数的更新,同时引入Dropout与批标准化,改进U-Net可以有效防止模型的过拟合现象,从而提高模型的泛化能力。实验结果表明,该文提出的改进U-Net对影像中的建筑物提取结果较好,在测试集上达到了94%以上的正确率,召回率达到79%,精确率达到78%,Kappa系数达到95%,相比U-Net分别提高了2%、2%、16%以及4%,实现了对城市区域遥感影像中的建筑物精确、快速提取。 展开更多
关键词 高分辨率遥感影像 u-net模型 残差学习 建筑物提取 深度学习
原文传递
基于改进的U-Net生成对抗网络的图像翻译算法 被引量:8
9
作者 常佳 王玉德 吉燕妮 《通信技术》 2020年第2期327-334,共8页
针对传统生成对抗网络(Generative Adversarial Networks,GAN)在图像翻译过程中生成图像的轮廓、纹理等特征丢失以及造成图像翻译效果不佳的问题,提出了基于改进U-Net模型的生成对抗网络图像翻译算法。首先,实验研究Pix2Pix生成对抗网... 针对传统生成对抗网络(Generative Adversarial Networks,GAN)在图像翻译过程中生成图像的轮廓、纹理等特征丢失以及造成图像翻译效果不佳的问题,提出了基于改进U-Net模型的生成对抗网络图像翻译算法。首先,实验研究Pix2Pix生成对抗网络优化算法、学习率以及迭代次数对图像翻译效果的影响,确定生成对抗网络模型参数与优化方法;其次,通过增加反卷积跳跃连接的重复次数增强特征的表达能力;最后,在CUFS人脸数据库上进行实验确定模型参数。实验表明,反卷积跳跃连接的重复次数为5次时,图像翻译的用户调研满意评价指标达到42%,图像翻译的质量达到最优。 展开更多
关键词 图像处理 生成对抗网络 图像翻译 优化算法 u-net模型 跳跃连接
下载PDF
融合转置卷积与深度残差图像语义分割方法 被引量:7
10
作者 刘腊梅 王晓娜 +1 位作者 刘万军 曲海成 《计算机科学与探索》 CSCD 北大核心 2022年第9期2132-2142,共11页
针对深度学习图像语义分割方法中存在分割精度低、损失率高的问题,提出了融合转置卷积与深度残差图像语义分割方法。首先,为了解决神经网络深度增加引起分割精度下降、收敛速度慢的问题,设计一种深度残差学习模块来提升网络的训练效率... 针对深度学习图像语义分割方法中存在分割精度低、损失率高的问题,提出了融合转置卷积与深度残差图像语义分割方法。首先,为了解决神经网络深度增加引起分割精度下降、收敛速度慢的问题,设计一种深度残差学习模块来提升网络的训练效率和收敛速度;然后,为了使上采样过程与特征提取过程中特征图融合精度更高,将深度残差U-net模型中UpSampling2D和转置卷积两种上采样方式进行拼接,形成新的上采样模块;最后,针对网络训练过程中训练集与验证集之间存在的权值过度拟合问题,在网络的跳跃连接层引入Dropout,增强了网络的学习能力。在CamVid数据集上对算法的性能进行了证明,算法语义分割精度达到89.93%,损失率降到0.23,与U-net模型相比,验证集精度提升了13.13个百分点,损失率降低了1.20,优于当前的图像语义分割方法。所提出的图像语义分割新模型,综合了U-net模型的优点,使得图像语义分割精度更高,语义分割的效果更好,有效提升了算法的鲁棒性。 展开更多
关键词 图像语义分割 u-net模型 深度残差网络 转置卷积
下载PDF
基于特征融合与注意力机制的脑肿瘤分割算法 被引量:4
11
作者 褚张晴晴 钟志强 +1 位作者 颜子夜 战荫伟 《计算机工程》 CAS CSCD 北大核心 2023年第10期154-161,共8页
脑肿瘤核磁共振成像(MRI)的准确分割对手术方案的制定和放疗计划具有重要意义。U-Net作为脑肿瘤分割领域应用最广泛的网络,具有较优的性能,但是存在跳跃连接中语义差距较大、MRI图像中跨通道信息利用不足的问题。为对脑肿瘤各区域进行... 脑肿瘤核磁共振成像(MRI)的准确分割对手术方案的制定和放疗计划具有重要意义。U-Net作为脑肿瘤分割领域应用最广泛的网络,具有较优的性能,但是存在跳跃连接中语义差距较大、MRI图像中跨通道信息利用不足的问题。为对脑肿瘤各区域进行准确分割,提出一种基于特征融合与注意力机制的改进U-Net模型FFCA-U-Net。在跳跃连接中设计特征融合模块代替U-Net中的直接拼接操作,以有效融合不同层次、不同尺度的特征信息,减小语义差距并调整感受野,增强网络对肿瘤特征的学习能力。在编码器中引入改进的三维坐标注意力机制,沿MRI图像的3个方向捕获跨通道信息,增强网络对脑肿瘤边界信息的感知能力,获得肿瘤子区域更精确的位置。此外,为快速获得肿瘤的相对位置、减少网络学习冗余,增加的掩码图像与MRI图像一起作为网络输入。在MSD数据集上的实验结果表明,FFCA-U-Net在增强肿瘤区域、非增强肿瘤区域和水肿区域的Dice系数分别为0.803 4、0.628 6和0.799 3,平均Dice为0.743 8,优于TransBTS、UNETR等其他先进网络。 展开更多
关键词 脑肿瘤 u-net模型 特征融合 三维坐标注意力机制 医学图像分割
下载PDF
基于改进U-Net模型的小麦收获含杂率在线检测方法 被引量:4
12
作者 陈满 金诚谦 +2 位作者 莫恭武 刘士坤 徐金山 《农业机械学报》 EI CAS CSCD 北大核心 2023年第2期73-82,共10页
含杂率是小麦机械化收获重要指标之一,但现阶段我国小麦收获过程含杂率在线检测难以实现。为了实现小麦机械化收获过程含杂率在线检测,本文提出基于结合注意力的改进U-Net模型的小麦机收含杂率在线检测方法。以机收小麦样本图像为基础,... 含杂率是小麦机械化收获重要指标之一,但现阶段我国小麦收获过程含杂率在线检测难以实现。为了实现小麦机械化收获过程含杂率在线检测,本文提出基于结合注意力的改进U-Net模型的小麦机收含杂率在线检测方法。以机收小麦样本图像为基础,采用Labelme手工标注图像,并通过随机旋转、缩放、剪切、水平镜像对图像进行增强,构建基础图像数据集;设计了结合注意力的改进U-Net模型分类识别模型,并在torch 1.2.0深度学习框架下实现模型的离线训练;将最优的离线模型移植到Nvidia jetson tx2开发套件上,设计了基于图像信息的含杂率量化模型,从而实现小麦机械化收获含杂率在线检测。试验结果表明:针对不同模型的训练结果,结合注意力的改进U-Net模型籽粒和杂质分割识别F1值分别为76.64%和85.70%,比标准U-Net高10.33个百分点和2.86个百分点,比DeepLabV3提高10.22个百分点和11.62个百分点,比PSPNet提高18.40个百分点和14.67个百分点,结合注意力的改进U-Net模型对小麦籽粒和杂质的识别效果最好;在台架试验和田间试验中,装置在线检测含杂率均值分别为1.69%和1.48%,比人工检测高0.26个百分点和0.13个百分点;由含杂率检测结果定性分析可知,无论是台架试验还是田间试验,装置和人工检测结果均小于2%,判定试验过程联合收获机的作业性能均符合国家标准,检测结果具有一致性。因此,本文提出的小麦含杂率在线检测方法能够为小麦联合收获作业质量在线调控提供技术支撑。 展开更多
关键词 小麦 收获 含杂率 在线检测 注意力机制 u-net模型
下载PDF
基于全U网络的混凝土路面裂缝检测算法 被引量:7
13
作者 瞿中 谢钇 《计算机科学》 CSCD 北大核心 2021年第4期187-191,共5页
针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法。首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池... 针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法。首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池化层之前的特征图规格,并将其与池化之前的卷积层进行融合,将融合之后的特征图作为新的融合层与原U-net网络上采样之后的网络层进行融合;最后,为了验证算法的有效性,在测试集中进行实验。结果表明,所提算法的平均精确率可达到83.48%,召回率为85.08%,F1为84.11%,相较于原U-net分别提升了1.48%,4.68%和3.29%,在复杂环境中也能提取完整裂缝,保证了裂缝检测的鲁棒性。 展开更多
关键词 裂缝检测 u-net模型 u网络
下载PDF
面向高分遥感影像道路提取的轻量级双注意力和特征补偿残差网络模型 被引量:6
14
作者 陈振 陈芸芝 +1 位作者 吴婷 李佳优 《地球信息科学学报》 CSCD 北大核心 2022年第5期949-961,共13页
针对高分辨率遥感影像背景复杂,道路提取容易受阴影、建筑物和铁路等背景信息干扰的问题,提出一种带有轻量级双注意力和特征补偿机制的DAFCResUnet模型。该模型在ResUnet的基础上,通过增加轻量级的双注意力和特征补偿模块实现模型在性... 针对高分辨率遥感影像背景复杂,道路提取容易受阴影、建筑物和铁路等背景信息干扰的问题,提出一种带有轻量级双注意力和特征补偿机制的DAFCResUnet模型。该模型在ResUnet的基础上,通过增加轻量级的双注意力和特征补偿模块实现模型在性能和时空复杂度上的平衡。其中,双注意力模块可以增强模型的特征提取能力,特征补偿模块可以融合网络中来自深浅层的道路特征。在DeepGlobe和GF-2道路数据集上的实验结果表明,DAFCResUnet模型的IoU和F1-score可以达到0.6713、0.8033和0.7402、0.8507,模型的整体精度优于U-Net、ResUnet和VNet模型。与U-Net和ResUnet模型相比,DAFCResUnet模型仅增加了少量的计算量和参数量,但IoU和F1-score均有较大幅度的提高;与VNet模型相比,DAFCResUnet模型在计算量和参数量远低于VNet的情况下取得了更高的精度,模型在精度和时空复杂度两方面均有优势。相比其他对比模型,DAFCResUnet模型具有更强的特征提取和抗干扰能力,能更好解决道路上的干扰物、与道路特征相似地物、树荫或阴影遮挡等造成的道路空洞、误提和漏提现象。 展开更多
关键词 深度学习 道路提取 高分辨率遥感影像 残差网络 u-net模型 双注意力模块 编解码器 特征补偿
原文传递
基于U-Net深度神经网络的早期火灾烟雾自动分割方法 被引量:7
15
作者 贾阳 喻润洋 樊良辉 《火灾科学》 CAS CSCD 北大核心 2019年第2期113-118,共6页
在火灾事件监测中,为了减少数据处理量、加快探测速度,需要先分割出疑似烟雾区域。传统的烟雾分割算法大多需要设置阈值进行处理,算法的环境适应能力还需进一步提升。在研究中,使用U-Net结构的深度神经网络进行早期火灾烟雾的自动分割,... 在火灾事件监测中,为了减少数据处理量、加快探测速度,需要先分割出疑似烟雾区域。传统的烟雾分割算法大多需要设置阈值进行处理,算法的环境适应能力还需进一步提升。在研究中,使用U-Net结构的深度神经网络进行早期火灾烟雾的自动分割,通过半自动算法人工辅助分割出烟雾区域的图像样本,基于深度神经网络对分割烟雾区域进行学习,得到原始视频帧到分割结果的映射模型,并据此模型进行烟雾区域分割。在测试集上的分割实验结果表明该方法与传统方法相比,不需要设置阈值,自动化程度更高,分割速度极快,在疑似烟雾区域分割任务中性能较好。 展开更多
关键词 深度神经网络 u-net模型 疑似烟雾区域分割 烟雾探测
下载PDF
基于深度学习的建筑物识别及占用耕地建房自动化监测--以湖南省长沙市X村为例 被引量:1
16
作者 石珊 胡兵 杨丛瑞 《湖北农业科学》 2024年第1期195-198,共4页
针对农村普遍存在的占用耕地建房现象,基于深度学习和图像分析提出了一种自动化监测方法,通过对高分辨率遥感影像数据的预处理,构建基于卷积神经网络的自动化监测模型,有效判定目标影像中的每个像元格是否占用耕地建房。以湖南省长沙市... 针对农村普遍存在的占用耕地建房现象,基于深度学习和图像分析提出了一种自动化监测方法,通过对高分辨率遥感影像数据的预处理,构建基于卷积神经网络的自动化监测模型,有效判定目标影像中的每个像元格是否占用耕地建房。以湖南省长沙市X村为例,横向比较U-Net、SegNet、DeepLabV3p模型的识别能力。结果表明,当学习率为0.01、批大小为2、迭代次数为100次时,U-Net模型对建筑物的识别结果最佳;该模型共发现66宗潜在占用耕地建房案例,识别结果准确率高且耗时短;该模型充分运用了现代信息技术及方法,可在一定程度提高土地执法监察的工作效率、节省工作时间及资源。 展开更多
关键词 深度学习 u-net模型 自动化监测 建筑物识别 占用耕地 土地执法 湖南省长沙市
下载PDF
基于改进的U-Net和YOLOv5的绝缘子掩模获取与缺陷检测 被引量:7
17
作者 唐小煜 熊浩良 +1 位作者 黄锐珊 林威霖 《数据采集与处理》 CSCD 北大核心 2021年第5期1041-1049,共9页
输电线路的绝缘子定期巡检是必不可少的一项任务,而传统的人工巡检存在着效率低、工作强度大等问题。因此,本文设计了一种改进的U-Net模型实现对绝缘子的分割,并使用改进的YOLOv5实现在复杂背景下对爆破绝缘子的定位。本文基于U-Net图... 输电线路的绝缘子定期巡检是必不可少的一项任务,而传统的人工巡检存在着效率低、工作强度大等问题。因此,本文设计了一种改进的U-Net模型实现对绝缘子的分割,并使用改进的YOLOv5实现在复杂背景下对爆破绝缘子的定位。本文基于U-Net图像语义分割模型,提出一种改进的网络结构SERes-Unet。模型引入残差结构减少卷积过程中存在的梯度消失、结构信息损耗的影响,引入注意力机制对特征权重进行校正,从而提升网络性能。为实现对高分辨率图像的爆破绝缘子检测,提出将图片进行切割再进行检测,再通过非极大值抑制(Non-maximum suppression,NMS)进行筛选,获取图像全部爆破绝缘子的位置。本文设计的多组实验验证了模型的有效性和高效性。本文方法绝缘子分割精度达到0.96,爆破绝缘子检测精确率达到0.97,召回率达到0.99。 展开更多
关键词 爆破绝缘子 图像语义分割 目标检测 u-net模型
下载PDF
基于深度学习的腰椎间盘退变全自动分级
18
作者 丁兆明 李鸿燕 +4 位作者 陈亮 陈兵 孙辉 候文韬 夏春华 《中国临床研究》 CAS 2024年第5期709-713,共5页
目的探讨深度学习模型在腰椎磁共振T2加权成像(T2WI)矢状图像上全自动识别腰椎间盘退变程度的可行性。方法回顾性抽取2020年8月至2022年6月于安徽医科大学第三附属医院就诊并行腰椎MRI检查的94例患者的腰椎T2WI图像数据,共获得466个椎间... 目的探讨深度学习模型在腰椎磁共振T2加权成像(T2WI)矢状图像上全自动识别腰椎间盘退变程度的可行性。方法回顾性抽取2020年8月至2022年6月于安徽医科大学第三附属医院就诊并行腰椎MRI检查的94例患者的腰椎T2WI图像数据,共获得466个椎间盘,由两名放射科医生手动标注腰椎间盘,将数据随机分为训练集(300个)、调优集(72个)和测试集(94个),首先使用U-Net网络训练椎间盘分割模型,模型评价指标包括Dice系数和交并比(IoU)分数;然后利用SpineNet网络训练分类模型进行评价,评价指标包括准确度、敏感度、特异度、F1分数及ROC曲线。结果测试集中U-Net模型对腰椎间盘分割的平均Dice系数值及IoU分数分别为0.920、0.853;SpineNet分类模型对腰椎间盘退变分类诊断的准确度、特异度、敏感度分别为0.913、0.912、0.916,ROC曲线分析示,该模型区分腰椎间盘退变轻度vs中度、轻度vs重度、中度vs重度的AUC值分别为0.89、0.95、0.90。结论深度学习网络对腰椎间盘退变程度的全自动分类是可行的。 展开更多
关键词 腰椎 椎间盘退变 深度学习网络 T2WI矢状图像 u-net模型 分割模型 分类模型
原文传递
基于全卷积神经网络方法的玉米田间杂草识别 被引量:6
19
作者 李彧 余心杰 郭俊先 《江苏农业科学》 北大核心 2022年第6期93-100,共8页
杂草是危害农业和林业生产的三害之一,对农业生产、生态环境、生物多样性等均会造成一定的危害。要解决杂草问题首先需要对杂草实现高效准确的识别,通过拍摄新疆旱地玉米大苗田间图像构建数据集,提取玉米苗与杂草2类标签,使用全卷积神... 杂草是危害农业和林业生产的三害之一,对农业生产、生态环境、生物多样性等均会造成一定的危害。要解决杂草问题首先需要对杂草实现高效准确的识别,通过拍摄新疆旱地玉米大苗田间图像构建数据集,提取玉米苗与杂草2类标签,使用全卷积神经网络(FCN)准确地分割2类目标实现杂草识别。利用图像翻转、镜像、对比度增强、亮度增强等4种增广方法扩增数据集,利用迁移学习技巧,对模型采取非初始参数训练,提升模型识别准确率。结果表明,选择的U-Net模型识别效果最佳,能够有效地克服阴天光照、地膜等因素干扰,实现杂草的快速准确识别,验证集识别正确率96.13%,能够满足杂草识别的实际要求。 展开更多
关键词 杂草识别 全卷积神经网络 深度学习 语义分割 u-net模型 VGG
下载PDF
基于SLA-UNet的海水网箱养殖信息提取
20
作者 柯丽娜 由金浩 范剑超 《海洋学报》 CAS CSCD 北大核心 2024年第5期93-102,共10页
网箱养殖是海水养殖中最重要的类型之一,各类网箱在遥感影像中形状不一,且背景复杂,以往的网箱提取方法,未能完全模拟人类的视觉行为,以及高效利用光谱信息。针对上述问题,提出深度多循环注意力光谱的U-Net网络模型(Spectral Loopy Atte... 网箱养殖是海水养殖中最重要的类型之一,各类网箱在遥感影像中形状不一,且背景复杂,以往的网箱提取方法,未能完全模拟人类的视觉行为,以及高效利用光谱信息。针对上述问题,提出深度多循环注意力光谱的U-Net网络模型(Spectral Loopy Attention U-Net,SLA-UNet)进行网箱养殖信息提取,使用基于最优尺度寻优(Estimation of Scale Parameter,ESP)的随机森林(Random Forest,RF)算法,去除波段运算后的冗余光谱信息,并添加类似人眼的注意力行为机制,深化影响网箱信息提取的重要特征通道,同时进行边缘补齐补充损失信息,实现了网箱养殖信息的高精度提取。选取广东省湛江市和海南省临高县作为研究区域,与Canny算子、Otsu算法、PCA_Kmeans算法、基于ESP的RF算法、U-Net模型提取结果进行对比,所提SLA-UNet模型近岸网箱的提取精度为98.3%,深海网箱提取精度平均值为98.9%,验证了SLA-UNet模型在网箱养殖识别中的有效性。 展开更多
关键词 网箱养殖 u-net模型 多循环注意力机制 深度特征 高效光谱特征
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部