[目的]介绍一种基于U-Net的高分影像的土地利用/覆盖变化检测方法,为该模型在遥感影像变化检测方面的应用提供理论支持。[方法]采用U型神经网络对河南省禹州市两期高分一号影像和WHU building dataset建筑物变化检测数据集中的变化图斑...[目的]介绍一种基于U-Net的高分影像的土地利用/覆盖变化检测方法,为该模型在遥感影像变化检测方面的应用提供理论支持。[方法]采用U型神经网络对河南省禹州市两期高分一号影像和WHU building dataset建筑物变化检测数据集中的变化图斑进行自动检测试验,并与FCN和SegNet两种模型进行比较。[结果]在两个数据集的验证样本中,U型神经网络模型的F 1值分别为0.699,0.66和0.673,均优于其他两种模型,并且漏检率较低,更加接近变化参考图。[结论]采用U型神经网络对高分辨率遥感影像进行土地利用/覆盖变化检测是可行的,且能有较高的检测精度。展开更多
针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,...针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,即U-Net对背景减除图像进行前景背景分割,最后采用全局最优阈值处理方法获得最终二值图像。实验结果表明,在2016和2017年国际文档图像二值化竞赛(DIBCO)中该算法的F值(F-measure,FM)、伪F值(pseudo F-measure,p-FM)、峰值信噪比(peak signal to noise ratio,PSNR)、距离倒数失真度量(distance reciprocal distortion,DRD)比性能次优的经典算法最高有5.58%、2.47%、0.86 dB、1.19%的性能提升。展开更多
文摘[目的]介绍一种基于U-Net的高分影像的土地利用/覆盖变化检测方法,为该模型在遥感影像变化检测方面的应用提供理论支持。[方法]采用U型神经网络对河南省禹州市两期高分一号影像和WHU building dataset建筑物变化检测数据集中的变化图斑进行自动检测试验,并与FCN和SegNet两种模型进行比较。[结果]在两个数据集的验证样本中,U型神经网络模型的F 1值分别为0.699,0.66和0.673,均优于其他两种模型,并且漏检率较低,更加接近变化参考图。[结论]采用U型神经网络对高分辨率遥感影像进行土地利用/覆盖变化检测是可行的,且能有较高的检测精度。
文摘针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,即U-Net对背景减除图像进行前景背景分割,最后采用全局最优阈值处理方法获得最终二值图像。实验结果表明,在2016和2017年国际文档图像二值化竞赛(DIBCO)中该算法的F值(F-measure,FM)、伪F值(pseudo F-measure,p-FM)、峰值信噪比(peak signal to noise ratio,PSNR)、距离倒数失真度量(distance reciprocal distortion,DRD)比性能次优的经典算法最高有5.58%、2.47%、0.86 dB、1.19%的性能提升。