Phenylketonuria(PKU),a disease resulting in the disability to degrade phenylalanine(Phe)is an inborn error with a 1 in 10,000 morbidity rate on average around the world which leads to neurotoxicity.As an potential alt...Phenylketonuria(PKU),a disease resulting in the disability to degrade phenylalanine(Phe)is an inborn error with a 1 in 10,000 morbidity rate on average around the world which leads to neurotoxicity.As an potential alternative to a protein-restricted diet,oral intake of engineered probiotics degrading Phe inside the body is a promising treatment,currently at clinical stage II(Isabella,et al.,2018).However,limited transmembrane transport of Phe is a bottleneck to further improvement of the probiotic’s activity.Here,we achieved simultaneous degradation of Phe both intracellularly and extracellularly by expressing genes encoding the Phe-metabolizing enzyme phenylalanine ammonia lyase(PAL)as an intracellularly free and a cell surface-immobilized enzyme in Escherichia coli Nissle 1917(EcN)which overcomes the transportation problem.The metabolic engineering strategy was also combined with strengthening of Phe transportation,transportation of PAL-catalyzed trans-cinnamic acid and fixation of released ammonia.Administration of our final synthetic strain TYS8500 with PAL both displayed on the cell surface and expressed inside the cell to the Pah^(F263S)PKU mouse model reduced blood Phe concentration by 44.4%compared to the control Ec N,independent of dietary protein intake.TYS8500 shows great potential in future applications for PKU therapy.展开更多
基金supported by the National Natural Science Foundation of China(21825804,31921006)the National Science&Technology Major Project“Key New Drug Creation and Manufacturing Program”,China(2018ZX09711002-019)the Shanghai Municipal Science and Technology Major Project and the National Key Research and Development Program of China(2018YFA0800603)。
文摘Phenylketonuria(PKU),a disease resulting in the disability to degrade phenylalanine(Phe)is an inborn error with a 1 in 10,000 morbidity rate on average around the world which leads to neurotoxicity.As an potential alternative to a protein-restricted diet,oral intake of engineered probiotics degrading Phe inside the body is a promising treatment,currently at clinical stage II(Isabella,et al.,2018).However,limited transmembrane transport of Phe is a bottleneck to further improvement of the probiotic’s activity.Here,we achieved simultaneous degradation of Phe both intracellularly and extracellularly by expressing genes encoding the Phe-metabolizing enzyme phenylalanine ammonia lyase(PAL)as an intracellularly free and a cell surface-immobilized enzyme in Escherichia coli Nissle 1917(EcN)which overcomes the transportation problem.The metabolic engineering strategy was also combined with strengthening of Phe transportation,transportation of PAL-catalyzed trans-cinnamic acid and fixation of released ammonia.Administration of our final synthetic strain TYS8500 with PAL both displayed on the cell surface and expressed inside the cell to the Pah^(F263S)PKU mouse model reduced blood Phe concentration by 44.4%compared to the control Ec N,independent of dietary protein intake.TYS8500 shows great potential in future applications for PKU therapy.