期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
二维主元分析在人脸识别中的应用研究 被引量:22
1
作者 何国辉 甘俊英 《计算机工程与设计》 CSCD 北大核心 2006年第24期4667-4669,4673,共4页
结合二维主元分析(two-dimensionalprincipalcomponentanalysis,2DPCA)的特点,将2DPCA算法用于人脸识别。它与主元分析(principalcomponentanalysis,PCA)的不同之处在于,2DPCA算法以图像矩阵为分析对象;而PCA算法以图像的一维向量为分... 结合二维主元分析(two-dimensionalprincipalcomponentanalysis,2DPCA)的特点,将2DPCA算法用于人脸识别。它与主元分析(principalcomponentanalysis,PCA)的不同之处在于,2DPCA算法以图像矩阵为分析对象;而PCA算法以图像的一维向量为分析对象。2DPCA算法是直接利用原始图像矩阵构造图像的协方差矩阵。而PCA算法需对原始图像矩阵先降维、再将降维矩阵转换成列向量,然后构造图像的协方差矩阵。为了测试和评估2DPCA算法的性能,在ORL(olivettiresearchlaboratory)与Yale人脸数据库上进行了实验,结果表明,2DPCA算法用于人脸识别的正确识别率高于PCA算法。同时,也显示了2DPCA算法在特征提取方面比PCA算法更有效。 展开更多
关键词 主元分析 二维主元分析 人脸识别 特征提取 特征压缩 模式识别
下载PDF
基于2DPCA的有效非局部滤波方法 被引量:12
2
作者 郑钰辉 孙权森 夏德深 《自动化学报》 EI CSCD 北大核心 2010年第10期1379-1389,共11页
最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的... 最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的非局部滤波方法.该方法对基于预选择的非局部滤波方法的主要贡献有:1)用于提取图像片特征的面向图像片的2DPCA;2)基于相似距离直方图的相似集自动选取方法;3)相似距离权重参数局部自适应选取方法.实验结果表明,本文方法对弱梯度、人脸、纹理以及分段光滑图像均能取得较好的滤波效果. 展开更多
关键词 非局部滤波 二维主成分分析 非局部正则化 图像片
下载PDF
融合双向主成分分析的二维线性判别方法 被引量:10
3
作者 许爽 索继东 丁纪峰 《大连海事大学学报》 CAS CSCD 北大核心 2011年第3期73-76,共4页
通过分析已有掌纹识别中特征提取的方法,提出一种融合双向主成分分析的二维线性判别方法.首先,对掌纹感兴趣区域的图像矩阵进行行和列双方向的二维主成分分析,消除图像中行和列的相关性,降低特征维数;然后,在其子空间内实现二维线性判别... 通过分析已有掌纹识别中特征提取的方法,提出一种融合双向主成分分析的二维线性判别方法.首先,对掌纹感兴趣区域的图像矩阵进行行和列双方向的二维主成分分析,消除图像中行和列的相关性,降低特征维数;然后,在其子空间内实现二维线性判别,得到最佳投影矩阵;最后,提取判别特征完成特征识别.实验结果表明,该方法提取速度快、识别率高、鲁棒性好. 展开更多
关键词 二维线性判别(2DFLD) 二维主成分分析(2dpca) 掌纹识别 特征提取
原文传递
模糊支持向量机在人脸识别中的应用 被引量:10
4
作者 戴花 王建平 《计算机工程与应用》 CSCD 2012年第6期158-161,176,共5页
针对人脸图像特征提取领域应用主成分分析和二维主成分分析方法,使用二维特征值求解相关样本隶属度,并利用相关特征值方法进行分类。该方法结合二维特征值,在特征提取时进行人脸图像重构,具有快速稳定和局部特征清晰的优点。通过引入矩... 针对人脸图像特征提取领域应用主成分分析和二维主成分分析方法,使用二维特征值求解相关样本隶属度,并利用相关特征值方法进行分类。该方法结合二维特征值,在特征提取时进行人脸图像重构,具有快速稳定和局部特征清晰的优点。通过引入矩阵内积与二维主成分分析特征分类结果进行比较,实验结果表明,在ORL和Yale数据库中利用该方法进行识别分类取得了很好的效果。 展开更多
关键词 人脸识别 样本隶属度 二维主成分分析 矩阵内积
下载PDF
改进非局部均值滤波的SAR图像降噪 被引量:9
5
作者 郑永恒 程建 曹宗杰 《中国图象图形学报》 CSCD 北大核心 2012年第7期886-891,共6页
在非局部均值滤波(NLMF)的基础上,通过预生成相似集与2DPCA(two-dimensional principle component analysis)对NLMF进行改进,提出一种新的SAR(synthetic aperture radar)图像降噪方法。在NLMF算法框架下,针对SAR图像噪声的特点,首先经... 在非局部均值滤波(NLMF)的基础上,通过预生成相似集与2DPCA(two-dimensional principle component analysis)对NLMF进行改进,提出一种新的SAR(synthetic aperture radar)图像降噪方法。在NLMF算法框架下,针对SAR图像噪声的特点,首先经预处理选择邻近的子图像生成相似集,然后通过2DPCA提取子图像的主要特征,此过程减小了斑点噪声对相似性度量的影响,最后在降维后子图像的基础上进行相似性度量。通过仿真SAR图像和真实SAR图像的降噪实验,将本文方法与经典Lee滤波、Kuan滤波、Gamma-Map滤波和NLMF滤波相比较,结果表明,该方法无论在边缘保持还是一致区域的平滑上,都能取得较好的效果,是一种有效的SAR图像降噪算法。 展开更多
关键词 SAR图像降噪 相似集 2维主成分分析(2dpca) 非局部均值滤波(NLMF)
原文传递
融合2DPCA和模糊2DLDA的人脸识别 被引量:8
6
作者 赵冬娟 梁久祯 《计算机应用》 CSCD 北大核心 2011年第2期420-422,449,共4页
结合模糊集理论、双向二维主成分-线性鉴别分析((2D)2PCALDA)的特点,提出一种新的人脸图像特征提取方法。算法首先对人脸图像进行二维主成分分析(2DPCA)处理,再用模糊K近邻算法计算图像的隶属度矩阵,并将其融入到2DLDA过程中,从而得到... 结合模糊集理论、双向二维主成分-线性鉴别分析((2D)2PCALDA)的特点,提出一种新的人脸图像特征提取方法。算法首先对人脸图像进行二维主成分分析(2DPCA)处理,再用模糊K近邻算法计算图像的隶属度矩阵,并将其融入到2DLDA过程中,从而得到模糊类间散射矩阵和模糊类内散射矩阵。与(2D)2PCALDA相比,该算法充分利用了(2D)2PCALDA的优点,有效地提取了行和列的识别信息,并充分考虑了样本的分布信息。在Yale和FERET人脸数据库上的实验结果表明,该方法识别效果优于(2D)2PCALDA、双向二维主成分分析((2D)2PCA)等方法。 展开更多
关键词 人脸识别 二维主成分分析 二维线性鉴别分析 模糊Fisherface 特征提取
下载PDF
一种结合2DLPP与2DPCA的人脸识别方法 被引量:8
7
作者 齐永锋 火元莲 《西南交通大学学报》 EI CSCD 北大核心 2011年第6期910-916,共7页
为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而... 为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而且能有效地提取人脸的局部特征和全局特征.在ORL、Yale和CAS-PEAL-R1人脸数据库上的实验结果表明,2DLPP-PCA是一种高性能的特征提取方法,当训练样本数为6时,2DLPP-PCA在ORL数据库上的最佳平均识别率达到99%以上. 展开更多
关键词 二维局部保持投影(2DLPP) 二维主成分分析(2dpca) 特征提取 人脸识别
下载PDF
基于对角DCT与2DPCA算法的人脸识别 被引量:7
8
作者 甘俊英 高建虎 李春芝 《计算机工程与应用》 CSCD 北大核心 2007年第31期210-213,共4页
提出了一种对角离散余弦变换(Discrete Cosine Transform,DCT)和二维主元分析(Two-Dimensional Principal Component Analysis,2DPCA)相结合的人脸识别方法。该算法首先将人脸图像转换成对角图像,同时利用DCT压缩并重建人脸图像;然后通... 提出了一种对角离散余弦变换(Discrete Cosine Transform,DCT)和二维主元分析(Two-Dimensional Principal Component Analysis,2DPCA)相结合的人脸识别方法。该算法首先将人脸图像转换成对角图像,同时利用DCT压缩并重建人脸图像;然后通过2DPCA进行特征提取得到人脸识别特征;最后运用最近邻分类器进行识别。基于ORL(Olivetti Research Laboratory)、受污损ORL及Yale人脸数据库的实验结果证明了该算法的有效性。 展开更多
关键词 离散余弦变换 二维主元分析 图像重建 人脸识别
下载PDF
双向压缩的2DPCA与PCA相结合的人脸识别算法 被引量:8
9
作者 李娟 何伟 +1 位作者 张玲 周阳 《计算机应用》 CSCD 北大核心 2009年第B06期245-246,268,共3页
主成分分析(PCA)直接用于人脸识别时,需将图像矩阵转换成向量,导致求解高阶矩阵计算量大。二维主成分分析(2DPCA)的实质是对图像矩阵按行进行图像压缩抽取特征,消除了图像列的相关性,但特征数量仍然较大,影响分类速度。针对这一问题,提... 主成分分析(PCA)直接用于人脸识别时,需将图像矩阵转换成向量,导致求解高阶矩阵计算量大。二维主成分分析(2DPCA)的实质是对图像矩阵按行进行图像压缩抽取特征,消除了图像列的相关性,但特征数量仍然较大,影响分类速度。针对这一问题,提出了采用双向压缩的二维主成分分析消除图像行间和列间的相关性,再结合PCA进一步减少特征数量,改进人脸识别算法,该算法用于ORL人脸库上得到了较高的识别率和较快的识别速度。 展开更多
关键词 主成分分析 二维主成分分析 人脸识别 特征抽取
下载PDF
改进的模块2DPCA人脸识别算法 被引量:7
10
作者 张岩 武玉强 《计算机工程》 CAS CSCD 北大核心 2011年第7期228-230,共3页
提出一种改进的模块2DPCA人脸识别算法,即基于子距离的模块2DPCA人脸识别算法。该算法对图像进行分块,对每一子块独立地利用2DPCA进行处理,求出测试样本子块与训练样本对应子块间的子距离,将所有子距离相加得到测试样本与训练样本的距离... 提出一种改进的模块2DPCA人脸识别算法,即基于子距离的模块2DPCA人脸识别算法。该算法对图像进行分块,对每一子块独立地利用2DPCA进行处理,求出测试样本子块与训练样本对应子块间的子距离,将所有子距离相加得到测试样本与训练样本的距离,用最近距离分类器分类。在ORL人脸库上的实验结果表明,该算法在识别性能上优于普通的模块2DPCA算法和修正的模块2DPCA算法。 展开更多
关键词 二维主成分分析 子距离 模块二维主成分分析 特征提取 人脸识别
下载PDF
基于增强的2维主成分分析的特征提取方法及其在人脸识别中的应用 被引量:6
11
作者 杨万扣 吉善兵 +1 位作者 任明武 杨静宇 《中国图象图形学报》 CSCD 北大核心 2009年第2期227-232,共6页
为了对图像进行最优压缩,提出了两步2维主成分分析方法进行特征提取,称为增强的2维主成分分析。增强的2维主成分分析首先对图像进行行方向的2维主成分分析,再进行列方向的2维主成分分析。增强的2维主成分分析对图像进行了行方向和列方... 为了对图像进行最优压缩,提出了两步2维主成分分析方法进行特征提取,称为增强的2维主成分分析。增强的2维主成分分析首先对图像进行行方向的2维主成分分析,再进行列方向的2维主成分分析。增强的2维主成分分析对图像进行了行方向和列方向的压缩,因此增强的2维主成分分析比2维主成分分析需要更少的系数来表示图像,需要更少的存储空间和分类时间。在ORL和FERET人脸库上的实验证明了该方法的有效性。 展开更多
关键词 主成分分析 2维主成分分析 特征提取 人脸识别
下载PDF
基于小波变换和部分最小二乘的掌纹识别 被引量:7
12
作者 郭金玉 苑玮琦 《光电子.激光》 EI CAS CSCD 北大核心 2008年第4期554-557,共4页
子空间法作为一种传统的识别方法,识别时基于整幅图像,复杂性比较高,而且没有考虑类别信息。为了降低计算复杂性和在提取数据特征的同时融入类别信息,研究了一种基于小波变换和部分最小二乘(PLS)的掌纹识别算法。在建议的识别方法中,首... 子空间法作为一种传统的识别方法,识别时基于整幅图像,复杂性比较高,而且没有考虑类别信息。为了降低计算复杂性和在提取数据特征的同时融入类别信息,研究了一种基于小波变换和部分最小二乘(PLS)的掌纹识别算法。在建议的识别方法中,首先通过小波三级分解提取低频子图像,对低频子图像应用PLS提取掌纹特征,然后将样本投影到提取的特征上作为特征向量进行分类识别。应用PolyU掌纹图像库进行实验分析,实验结果表明:与主元分析(PCA)、二维主元分析(2DPCA)和独立主元分析(ICA)相比,该方法的识别率得到了很大的提高,大大减小了误识率和拒识率,验证了该方法的有效性。 展开更多
关键词 掌纹识别 部分最小二乘(PLS) 主元分析 二维主元分析 独立主元分析 小波变换
原文传递
基于环形对称Gabor变换和2DPCA的人脸识别算法 被引量:6
13
作者 王娜 王汇源 《计算机工程与应用》 CSCD 北大核心 2015年第16期146-150,共5页
与传统Gabor小波变换相比,环形对称Gabor变换(CSGT)具有信息冗余度低和严格的旋转不变性的优点。提出了一种基于环形对称Gabor变换与2DPCA的人脸识别新算法,首先将所有人脸图像都变换到环形对称Gabor变换域,然后按照两种融合方案将不同... 与传统Gabor小波变换相比,环形对称Gabor变换(CSGT)具有信息冗余度低和严格的旋转不变性的优点。提出了一种基于环形对称Gabor变换与2DPCA的人脸识别新算法,首先将所有人脸图像都变换到环形对称Gabor变换域,然后按照两种融合方案将不同尺度的特征融合到一起,最后采用2DPCA方法进行特征提取和分类。在ORL人脸数据库上进行仿真实验并与传统的2DPCA、GT+2DPCA等方法做了对比,实验结果表明提出的算法不但取得了更好的识别效果,而且提高了识别速度。 展开更多
关键词 环形对称Gabor变换(CSGT) 二维主成分分析(2dpca) 人脸识别
下载PDF
基于小波变换、二维主元分析与独立元分析的人脸识别方法 被引量:5
14
作者 甘俊英 李春芝 《模式识别与人工智能》 EI CSCD 北大核心 2007年第3期377-381,共5页
结合小波变换(WT)、二维主元分析(2DPCA)和独立元分析(ICA)的特点,提出一种人脸识别方法.首先,利用小波变换将原始图像分解为高频分量和低频分量,并忽略水平高频与垂直高频分量,从而消除噪声.然后,通过2DPCA 对该图像进行降维,求得白化... 结合小波变换(WT)、二维主元分析(2DPCA)和独立元分析(ICA)的特点,提出一种人脸识别方法.首先,利用小波变换将原始图像分解为高频分量和低频分量,并忽略水平高频与垂直高频分量,从而消除噪声.然后,通过2DPCA 对该图像进行降维,求得白化矩阵.再利用 ICA 获得训练样本的独立元成分,同时求得训练样本独立基构造的独立基子空间.最后,将训练样本与测试样本分别朝该独立基子空间投影,获得样本的投影特征,并依据最近邻准则完成人脸识别.基于 ORL 与 Yale 人脸数据库的实验结果表明,本文方法正确识别率高于2DPCA、2DPCA-ICA 与 WT-2DPCA 算法. 展开更多
关键词 人脸识别 二维主元分析(2dpca) 独立元分析(ICA) 小波变换(WT)
原文传递
分段2维主成分分析的超光谱图像波段选择 被引量:6
15
作者 张婧 孙俊喜 +1 位作者 阮光诗 刘红喜 《中国图象图形学报》 CSCD 北大核心 2014年第2期328-332,共5页
目的超光谱图像具有极高的谱间分辨率,巨大的数据量给分类识别等后续处理带来很大压力。为了有效降低图像数据维数,提出基于分段2维主成分分析(2DPCA)的超光谱图像波段选择算法。方法首先根据谱间相关性对原始图像进行波段分组,然后根... 目的超光谱图像具有极高的谱间分辨率,巨大的数据量给分类识别等后续处理带来很大压力。为了有效降低图像数据维数,提出基于分段2维主成分分析(2DPCA)的超光谱图像波段选择算法。方法首先根据谱间相关性对原始图像进行波段分组,然后根据主成分反映每个光谱波段的信息比重分别对每组图像进行波段选择,从而实现超光谱图像的谱间降维。结果该算法有效降低了超光谱图像的光谱维数,选择的波段明显反映出不同地物像元矢量的区别。结论实验结果表明,该波段选择算法相对传统算法速度更快,并且较好地保留了原始图像的局部重要信息,对后续处理有积极意义。 展开更多
关键词 超光谱图像 2维主成分分析 波段选择 波段分组
原文传递
广义余弦二维主成分分析 被引量:6
16
作者 王肖锋 陆程昊 +1 位作者 郦金祥 刘军 《自动化学报》 EI CAS CSCD 北大核心 2022年第11期2836-2851,共16页
主成分分析(Principal component analysis,PCA)是一种广泛应用的特征提取与数据降维方法,其目标函数采用L2范数距离度量方式,对离群数据及噪声敏感.而L1范数虽然能抑制离群数据的影响,但其重构误差并不能得到有效控制.针对上述问题,综... 主成分分析(Principal component analysis,PCA)是一种广泛应用的特征提取与数据降维方法,其目标函数采用L2范数距离度量方式,对离群数据及噪声敏感.而L1范数虽然能抑制离群数据的影响,但其重构误差并不能得到有效控制.针对上述问题,综合考虑投影距离最大及重构误差较小的目标优化问题,提出一种广义余弦模型的目标函数.通过极大化矩阵行向量的投影距离与其可调幂的2范数之间的比值,使得其在数据降维的同时提高了鲁棒性.在此基础上提出广义余弦二维主成分分析(Generalized cosine two dimensional PCA,GC2DPCA),给出了其迭代贪婪的求解算法,并对其收敛性及正交性进行理论证明.通过选择不同的可调幂参数,GC2DPCA可应用于广泛的含离群数据的鲁棒降维.人工数据集及多个人脸数据集的实验结果表明,本文算法在重构误差、相关性及分类率等性能方面均得到了提升,具有较强的抗噪能力. 展开更多
关键词 二维主成分分析 广义余弦模型 鲁棒性 范数 降维
下载PDF
基于图像欧氏距离的二维局部多样性保持投影 被引量:6
17
作者 高全学 高菲菲 +1 位作者 郝秀娟 程洁 《自动化学报》 EI CSCD 北大核心 2013年第7期1062-1070,共9页
主成分分析可以较好地保持数据的全局多样性几何属性,在模式识别、机器学习、图像识别等领域有着很重要的作用.缺点是他不能较好地保持局部数据的多样性几何属性,且忽略了图像像素之间的相互关系,导致算法性能不够好,且对模式形变比较敏... 主成分分析可以较好地保持数据的全局多样性几何属性,在模式识别、机器学习、图像识别等领域有着很重要的作用.缺点是他不能较好地保持局部数据的多样性几何属性,且忽略了图像像素之间的相互关系,导致算法性能不够好,且对模式形变比较敏感.对此问题,提出了一种基于图像欧氏距离的二维局部多样性保持投影.该方法利用邻接图描述局部数据之间的变化关系,然后利用图像欧氏距离度量数据间的多样性几何属性,有效地将图像像素之间的相互关系嵌入到目标函数中.和主成分分析相比,所提方法较好地保持了局部数据的多样性几何属性,而且明确考虑了图像像素之间的相互关系,对模式形变具有好的鲁棒性.在Yale,AR及PIE三个人脸库上的实验结果证明了所提算法的有效性. 展开更多
关键词 二维主成分分析 多样性 流形学习 特征提取 人脸识别
下载PDF
一种用于人脸识别的非迭代GLRAM算法 被引量:5
18
作者 赵扬扬 周水生 武亚静 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第2期144-150,共7页
利用二维主成分分析算法通过协方差矩阵获得右投影变换矩阵,进一步对其投影特征矩阵降维获得左投影变换矩阵,提出了一种矩阵广义低秩逼近的新的非迭代算法.ORL和AR人脸数据库的实验研究表明,新的非迭代算法在图像重建和图像识别方面都... 利用二维主成分分析算法通过协方差矩阵获得右投影变换矩阵,进一步对其投影特征矩阵降维获得左投影变换矩阵,提出了一种矩阵广义低秩逼近的新的非迭代算法.ORL和AR人脸数据库的实验研究表明,新的非迭代算法在图像重建和图像识别方面都取得了和矩阵广义低秩逼近的迭代算法相近的效果,同时节省了大量的训练时间,而较二维主成分分析,新算法以较大的压缩率取得了更好的图像重建效果和识别率. 展开更多
关键词 人脸识别 数据降维 矩阵的广义低秩逼近 二维主成分分析(2dpca)
下载PDF
基于图像协方差无关的增量特征提取方法研究 被引量:5
19
作者 王肖锋 孙明月 葛为民 《电子与信息学报》 EI CSCD 北大核心 2019年第11期2768-2776,共9页
针对2维主成分分析(2DPCA)算法无法实现在线特征提取及无法体现完整数据结构信息等问题,该文提出一种基于图像协方差无关的增量式2DPCA(I2DPCA)算法。该算法无需对图像协方差矩阵进行特征值分解奇异值分解,复杂度将大为降低,提高了特征... 针对2维主成分分析(2DPCA)算法无法实现在线特征提取及无法体现完整数据结构信息等问题,该文提出一种基于图像协方差无关的增量式2DPCA(I2DPCA)算法。该算法无需对图像协方差矩阵进行特征值分解奇异值分解,复杂度将大为降低,提高了特征提取速度。针对I2DPCA仅提取了横向特征的问题,又提出一种增量式行列顺序2DPCA(IRC2DPCA)算法,该算法对I2DPCA的特征矩阵再次进行纵向特征提取,保留了图像的横向与纵向结构信息,实现了行列两个方向上的特征提取与数据降维。最后,以自建的物块数据集、通用的ORL和Yale人脸数据集分别进行对比实验,结果表明,该文算法在收敛率、分类率及复杂度等性能方面均得到了显著提高,其收敛率达到99%以上,分类率可达97.6%,平均处理速度为29帧/s,能够满足增量特征提取的实时处理需求。 展开更多
关键词 模式识别 协方差无关 特征提取 增量学习 2维主成分分析
下载PDF
基于2DPCA和EBFNN的指纹识别方法 被引量:5
20
作者 罗菁 林树忠 +1 位作者 詹湘琳 倪建云 《光学精密工程》 EI CAS CSCD 北大核心 2008年第9期1773-1780,共8页
结合小波变换(WT)、二维主元分析(2DPCA)和椭球基函数(EBF)特点,提出了一种基于WT、2DPCA和EBF神经网络指纹识别方法。利用小波变换将原始图像分解为高频分量和低频分量,并忽略水平高频与垂直高频分量,获得原始图像的基本特征。再通过2D... 结合小波变换(WT)、二维主元分析(2DPCA)和椭球基函数(EBF)特点,提出了一种基于WT、2DPCA和EBF神经网络指纹识别方法。利用小波变换将原始图像分解为高频分量和低频分量,并忽略水平高频与垂直高频分量,获得原始图像的基本特征。再通过2DPCA算法对该图像进行降维,获取降维特征;最后结合椭球基函数神经网络(EBFNN)完成指纹识别。本算法将2DPCA优化的特征提取与EBFNN的自适应性相结合,在FVC2000(国际指纹竞赛数据库)上做了测试,总的正确识别率可达91.4%,具有一定的实用价值。与WT-PNN算法和WT-2DPCA-RBF算法进行比较,结果表明,本文提出的算法在平移、旋转及光照变化的指纹数据库上的识别效果优于WT-PNN算法和WT-2DPCA-RBF算法。 展开更多
关键词 指纹识别 二维主元分析 椭球基函数 小波变换
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部