Offshore oil slicks are significant for both the monitoring of marine spill accidents and the detection of marine oil resources.The use of remote sensing technology to detect the thickness of oil slicks is a major are...Offshore oil slicks are significant for both the monitoring of marine spill accidents and the detection of marine oil resources.The use of remote sensing technology to detect the thickness of oil slicks is a major area of research.The reflected light from oil slicks changes with the thickness of the oil.This is the theoretical basis of research on optical remote sensing of offshore oil slicks.A two-beam interference model that considers the offshore oil slick as a flat plate has been developed in this study.A quantitative remote sensing model which describes a series of processes that use oil slick thickness and reflectance as variables is established.The use of the Fresnel equation to analyze parameters in the model indicated that the key property of the quantitative relationship between the oil slick thickness and reflectance was ultimately the disappearance or extinction of the oil slick.This model has been tested and verified by data from offshore oil slick spectral response experiments.Results showed that the oil slick thickness remote sensing model can be theoretically analyzed and is efficient.The research indicated that the major cause of variations in the spectral response as a function of oil slick thickness was the different light-scattering characteristics.These characteristics can be used in remote sensing applications to identify the different types of offshore oil slicks.The theoretical interpretation of each parameter in this model led to the development of a look-up table of the model parameters which will improve the efficiency of future offshore oil slick remote sensing.展开更多
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos...Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.展开更多
Functional periodic structures have attracted significant interest due to their natural capabilities in regulating surface energy, surface effective refractive index, and diffraction. Several technologies are used for...Functional periodic structures have attracted significant interest due to their natural capabilities in regulating surface energy, surface effective refractive index, and diffraction. Several technologies are used for the fabrication of these functional structures. The laser interference technique in particular has received attention because of its simplicity, low cost, and high-efficiency fabrication of large-area, micro/nanometer-scale, and periodically patterned structures in air conditions. Here, we reviewed the work on laser interference fabrication of large-area functional periodic structures for antireflection, self-cleaning, and superhydrophobicity based on our past and current research. For the common cases, four-beam interference and multi-exposure of two-beam interference were emphasized for their setup, structure diversity, and various applications for antireflection, self-cleaning, and superhydrophobicity. The relations between multi-beam interference and multi-exposure of two-beam interference were compared theoretically and experimentally. Nanostructures as a template for growing nanocrystals were also shown to present future possible applications in surface chemical control. Perspectives on future directions and applications for laser interference were presented.展开更多
The Rare Isotope Science Project (RISP) is a research complex consisting of a heavy-ion accelerator, which contains a front-end system, a super-conducting linear accelerator, an isotope separator online (ISOL) system,...The Rare Isotope Science Project (RISP) is a research complex consisting of a heavy-ion accelerator, which contains a front-end system, a super-conducting linear accelerator, an isotope separator online (ISOL) system, and an in-flight system. The original purpose of the post-linear-accelerator (post-linac) section was to accelerate either a stable driver beam derived from an electron cyclotron resonance ion source, or an unstable rare-isotope beam from an ISOL system. The post-linac lattice has now been redesigned using a novel and improved acceleration concept that allows the simultaneous acceleration of both a stable driver beam and a radioisotope beam. To achieve this, the post-linac lattice is set for a mass-to-charge ratio (A/q) that is the average of the two beams. The performance of this simultaneous two-beam acceleration is here assessed using two ion beams: 58Ni^8+ and 132Sn^20+. A beam dynamics simulation was performed using the TRACK and TraceWin codes. The resultant beam dynamics for the new RISP post-linac lattice design are examined. We also estimate the effects of machine errors and their correction on the post-linac lattice.展开更多
The effect of temperature on photorefractive process is a significant problem inphotorefractive nonlinear optics. The temperature dependence of photoretiactive effect in semiinsulating semiconductive material Cr: GaAs...The effect of temperature on photorefractive process is a significant problem inphotorefractive nonlinear optics. The temperature dependence of photoretiactive effect in semiinsulating semiconductive material Cr: GaAs was investigated by CHENG Li-jen et al., and they thought that the band gap of conventional oxide photorefractive crystal was too wide, so it is difficult to observe the temperature dependence of photorefractive effect in a general experimental condition. But the point of view has been proved not true by our experiment展开更多
The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the...The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the discontinuity,the wave reflection and transmission coefficients are calculated.Wave control is applied somewhere upstream or downstream to two-beam structures.Vibrations of two coupled beams per unit disturbance are investigated.The results show that wave control is efficient,and the influence of the thickness ratio of two-beam structures on control location is discussed.展开更多
Inhomogeneity and low efficiency are two important factors that hinder the wide application of laser-induced periodic surface structures. Two-beam interference is commonly used to fabricate gratings with interference ...Inhomogeneity and low efficiency are two important factors that hinder the wide application of laser-induced periodic surface structures. Two-beam interference is commonly used to fabricate gratings with interference periods. This study reports regular and uniform periodic ripples fabricated efficiently by the interference of two femtosecond laser beams via a cylindrical lens. The interference period is adjusted to be an integer multiple of the wavelength of a surface plasmon polariton. Regular and uniform subwavelength nanogratings(RUSNGs)on a silicon wafer of a diameter of 100 mm are fabricated with a scanning velocity of 6–9 mm/s. Bright and pure colors(including purple, blue, and red) are demonstrated on different patterns covered with RUSNGs.展开更多
Photorefractive crystals present varied features charming presence, such as high resolution, and normal handling. Depending on the portability of erasing images, photorefractive crystals are convenient for read-write ...Photorefractive crystals present varied features charming presence, such as high resolution, and normal handling. Depending on the portability of erasing images, photorefractive crystals are convenient for read-write implementations and hence find potential use in speckle photography, speckle interferometry, image processing and holography. A two-beam coupling arrangement using a LiNbO3 crystal as a recording medium for real-time rotation measurement using the coherent and low-power laser source is presented in this paper. A speckle photography technique is advanced for the measurement of a small rotation of a transmitted glass slide sample. New theoretical analysis is formulated for a general case of a slide rotation. Experimental studies are carried out to verify the outcome of the theoretical predictions and accuracy of measurement. Uncertainty of rotation measurement is studied and quantified. The proposed technique is a simple, attractive and alternative method for fringe analysis. The method promises a high degree of accuracy and increased range for rotation measurement in real-time.展开更多
A two-factor identity authentication method on the basis of two-beam interference was presented. While verifying a user’s identity, a specific “phase key” as well as a corresponding “phase lock” are both mandator...A two-factor identity authentication method on the basis of two-beam interference was presented. While verifying a user’s identity, a specific “phase key” as well as a corresponding “phase lock” are both mandatory required for a successful authentication. Note that this scheme can not only check the legality of the users, but also verify their identity levels so as to grant them hierarchical access permissions to various resources of the protected systems or organizations. The authentication process is straightforward and could be implemented by a hybrid optic-electrical system. However, the system designing procedure involves an iterative Modified Phase Retrieval Algorithm (MPRA) and can only be achieved by digital means. Theoretical analysis and simulations both validate the effectiveness of our method.展开更多
The photorefractive (PR) performance of an organic/inorganic hybrid polymer composite sensitized by CdS nanoparticles, combining poly(N-vinylcarbazole) (PVK), the second-order optically nonlinear chromophore 1-n...The photorefractive (PR) performance of an organic/inorganic hybrid polymer composite sensitized by CdS nanoparticles, combining poly(N-vinylcarbazole) (PVK), the second-order optically nonlinear chromophore 1-n-butoxy-2-methyl-(4-p-nitropheylazo)benzene (BMNPAB) and 9-ethylcarbazole (ECZ) was studied. It was confirmed that the CdS colloidal particles had a nanoscale size and quantum confinement effect adopting transmission electron microscopy and UV-Vis absorption spectroscopy. The addition of CdS nanoparticles as a photosensitizer in PVK will be significant enhancement of photoconductivity because of the high photocharge generation quantum efficiency and high charge transport to conducting polymer. The polymer composite film exhibited PR effect with a method of two-beam coupling experiment. And an asymmetric two. beam coupling gain of 45.8 cm^-1 without applied electric filed is obtained at 632.8 nm wavelength.展开更多
行波管具有高增益、宽带宽、高输出功率等优点,但频率提升到THz后,输出功率急剧降低,为此采用多注与功率合成的方式提高输出功率。对D波段折叠波导行波管进行的理论与数值分析表明:单束的3 d B带宽为13 GHz(0.134 THz^0.147 THz),0.14 ...行波管具有高增益、宽带宽、高输出功率等优点,但频率提升到THz后,输出功率急剧降低,为此采用多注与功率合成的方式提高输出功率。对D波段折叠波导行波管进行的理论与数值分析表明:单束的3 d B带宽为13 GHz(0.134 THz^0.147 THz),0.14 THz处最大增益为20.88 d B;多束合成增益为20.6 d B,3 d B带宽内合成效率不低于92%。通过微铣削的办法加工完成了2路折叠波导,并对其传输特性进行测量,对比分析了测试与设计结果。并行多注行波管能够以单束小电流、低聚焦磁场方式工作,可有效提高THz行波管的输出功率。展开更多
Research on photorefractive effect grew unceasingly in the past two decades. A special application of the effect, light amplification, has drawn much attention recently. In order to improve the gain coefficient of pho...Research on photorefractive effect grew unceasingly in the past two decades. A special application of the effect, light amplification, has drawn much attention recently. In order to improve the gain coefficient of photorefractive crystals, methods of adjusting dopants and their concentration or special techniques are adopted展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 40971186 and 41001196 )the Open Research Fund of Key Laboratory of Digital Earth,Center for Earth Observation and Digital Earth,Chinese Academy of Sciences (Grant No. 2010LDE007)
文摘Offshore oil slicks are significant for both the monitoring of marine spill accidents and the detection of marine oil resources.The use of remote sensing technology to detect the thickness of oil slicks is a major area of research.The reflected light from oil slicks changes with the thickness of the oil.This is the theoretical basis of research on optical remote sensing of offshore oil slicks.A two-beam interference model that considers the offshore oil slick as a flat plate has been developed in this study.A quantitative remote sensing model which describes a series of processes that use oil slick thickness and reflectance as variables is established.The use of the Fresnel equation to analyze parameters in the model indicated that the key property of the quantitative relationship between the oil slick thickness and reflectance was ultimately the disappearance or extinction of the oil slick.This model has been tested and verified by data from offshore oil slick spectral response experiments.Results showed that the oil slick thickness remote sensing model can be theoretically analyzed and is efficient.The research indicated that the major cause of variations in the spectral response as a function of oil slick thickness was the different light-scattering characteristics.These characteristics can be used in remote sensing applications to identify the different types of offshore oil slicks.The theoretical interpretation of each parameter in this model led to the development of a look-up table of the model parameters which will improve the efficiency of future offshore oil slick remote sensing.
文摘Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.
基金Acknowledgements H. B. Sun thanks the National Key Research and Development Program of China and the National Natural Science Foundation of China (Grant Nos. 2017YFBI104300, 61590930, 20150203008GX, and 61605055).
文摘Functional periodic structures have attracted significant interest due to their natural capabilities in regulating surface energy, surface effective refractive index, and diffraction. Several technologies are used for the fabrication of these functional structures. The laser interference technique in particular has received attention because of its simplicity, low cost, and high-efficiency fabrication of large-area, micro/nanometer-scale, and periodically patterned structures in air conditions. Here, we reviewed the work on laser interference fabrication of large-area functional periodic structures for antireflection, self-cleaning, and superhydrophobicity based on our past and current research. For the common cases, four-beam interference and multi-exposure of two-beam interference were emphasized for their setup, structure diversity, and various applications for antireflection, self-cleaning, and superhydrophobicity. The relations between multi-beam interference and multi-exposure of two-beam interference were compared theoretically and experimentally. Nanostructures as a template for growing nanocrystals were also shown to present future possible applications in surface chemical control. Perspectives on future directions and applications for laser interference were presented.
文摘The Rare Isotope Science Project (RISP) is a research complex consisting of a heavy-ion accelerator, which contains a front-end system, a super-conducting linear accelerator, an isotope separator online (ISOL) system, and an in-flight system. The original purpose of the post-linear-accelerator (post-linac) section was to accelerate either a stable driver beam derived from an electron cyclotron resonance ion source, or an unstable rare-isotope beam from an ISOL system. The post-linac lattice has now been redesigned using a novel and improved acceleration concept that allows the simultaneous acceleration of both a stable driver beam and a radioisotope beam. To achieve this, the post-linac lattice is set for a mass-to-charge ratio (A/q) that is the average of the two beams. The performance of this simultaneous two-beam acceleration is here assessed using two ion beams: 58Ni^8+ and 132Sn^20+. A beam dynamics simulation was performed using the TRACK and TraceWin codes. The resultant beam dynamics for the new RISP post-linac lattice design are examined. We also estimate the effects of machine errors and their correction on the post-linac lattice.
文摘The effect of temperature on photorefractive process is a significant problem inphotorefractive nonlinear optics. The temperature dependence of photoretiactive effect in semiinsulating semiconductive material Cr: GaAs was investigated by CHENG Li-jen et al., and they thought that the band gap of conventional oxide photorefractive crystal was too wide, so it is difficult to observe the temperature dependence of photorefractive effect in a general experimental condition. But the point of view has been proved not true by our experiment
基金Supported by the National Natural Science Foundation of China(11102047,11002037)the Special Funds of Central Colleges Basic Scientific Research Operating Expenses(HEUCF20111139)the Fundamental Research Foundation of Harbin Engineering University(002110260746)
文摘The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the discontinuity,the wave reflection and transmission coefficients are calculated.Wave control is applied somewhere upstream or downstream to two-beam structures.Vibrations of two coupled beams per unit disturbance are investigated.The results show that wave control is efficient,and the influence of the thickness ratio of two-beam structures on control location is discussed.
基金supported by the National Natural Science Foundation of China (Nos. 91950112,11474097,91950112)the Science and Technology Commission of Shanghai Municipality (No. 19ZR1414500)the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)。
文摘Inhomogeneity and low efficiency are two important factors that hinder the wide application of laser-induced periodic surface structures. Two-beam interference is commonly used to fabricate gratings with interference periods. This study reports regular and uniform periodic ripples fabricated efficiently by the interference of two femtosecond laser beams via a cylindrical lens. The interference period is adjusted to be an integer multiple of the wavelength of a surface plasmon polariton. Regular and uniform subwavelength nanogratings(RUSNGs)on a silicon wafer of a diameter of 100 mm are fabricated with a scanning velocity of 6–9 mm/s. Bright and pure colors(including purple, blue, and red) are demonstrated on different patterns covered with RUSNGs.
文摘Photorefractive crystals present varied features charming presence, such as high resolution, and normal handling. Depending on the portability of erasing images, photorefractive crystals are convenient for read-write implementations and hence find potential use in speckle photography, speckle interferometry, image processing and holography. A two-beam coupling arrangement using a LiNbO3 crystal as a recording medium for real-time rotation measurement using the coherent and low-power laser source is presented in this paper. A speckle photography technique is advanced for the measurement of a small rotation of a transmitted glass slide sample. New theoretical analysis is formulated for a general case of a slide rotation. Experimental studies are carried out to verify the outcome of the theoretical predictions and accuracy of measurement. Uncertainty of rotation measurement is studied and quantified. The proposed technique is a simple, attractive and alternative method for fringe analysis. The method promises a high degree of accuracy and increased range for rotation measurement in real-time.
文摘A two-factor identity authentication method on the basis of two-beam interference was presented. While verifying a user’s identity, a specific “phase key” as well as a corresponding “phase lock” are both mandatory required for a successful authentication. Note that this scheme can not only check the legality of the users, but also verify their identity levels so as to grant them hierarchical access permissions to various resources of the protected systems or organizations. The authentication process is straightforward and could be implemented by a hybrid optic-electrical system. However, the system designing procedure involves an iterative Modified Phase Retrieval Algorithm (MPRA) and can only be achieved by digital means. Theoretical analysis and simulations both validate the effectiveness of our method.
基金Key Project of the National Natural Science Foundation of China(No.60537050)
文摘The photorefractive (PR) performance of an organic/inorganic hybrid polymer composite sensitized by CdS nanoparticles, combining poly(N-vinylcarbazole) (PVK), the second-order optically nonlinear chromophore 1-n-butoxy-2-methyl-(4-p-nitropheylazo)benzene (BMNPAB) and 9-ethylcarbazole (ECZ) was studied. It was confirmed that the CdS colloidal particles had a nanoscale size and quantum confinement effect adopting transmission electron microscopy and UV-Vis absorption spectroscopy. The addition of CdS nanoparticles as a photosensitizer in PVK will be significant enhancement of photoconductivity because of the high photocharge generation quantum efficiency and high charge transport to conducting polymer. The polymer composite film exhibited PR effect with a method of two-beam coupling experiment. And an asymmetric two. beam coupling gain of 45.8 cm^-1 without applied electric filed is obtained at 632.8 nm wavelength.
文摘行波管具有高增益、宽带宽、高输出功率等优点,但频率提升到THz后,输出功率急剧降低,为此采用多注与功率合成的方式提高输出功率。对D波段折叠波导行波管进行的理论与数值分析表明:单束的3 d B带宽为13 GHz(0.134 THz^0.147 THz),0.14 THz处最大增益为20.88 d B;多束合成增益为20.6 d B,3 d B带宽内合成效率不低于92%。通过微铣削的办法加工完成了2路折叠波导,并对其传输特性进行测量,对比分析了测试与设计结果。并行多注行波管能够以单束小电流、低聚焦磁场方式工作,可有效提高THz行波管的输出功率。
文摘Research on photorefractive effect grew unceasingly in the past two decades. A special application of the effect, light amplification, has drawn much attention recently. In order to improve the gain coefficient of photorefractive crystals, methods of adjusting dopants and their concentration or special techniques are adopted