Based on entanglement swapping, a scheme for the secret sharing of an arbitrary two-particle entangled state is proposed. If the controllers do not co-operate with the eavesdropper, the eavesdropper's successful prob...Based on entanglement swapping, a scheme for the secret sharing of an arbitrary two-particle entangled state is proposed. If the controllers do not co-operate with the eavesdropper, the eavesdropper's successful probability decreases with the number of the controllers increasing. In addition, only the Bell-state measurements are required to realize the secret sharing scheme.展开更多
In this article, a protocol for the teleportation of an unknown two-panicle entanglement is proposed. The feature of the present protocol is that we utilize an asymmetric threeparticle entangled state as the quantum c...In this article, a protocol for the teleportation of an unknown two-panicle entanglement is proposed. The feature of the present protocol is that we utilize an asymmetric threeparticle entangled state as the quantum channel. The optimal discrimination between two nonorthogonal quantum states is adopted. It is shown that an unknown two-particle entangled state can be probabilistically teleported from the sender to the remote receiver on condition that the co-sender successfully collaborates. The fidelity in this protocol is one. In addition, the probability of the successful teleportation is calculated and all kinds of transformations performed by the sender and the receiver are provided in detail.展开更多
A scheme for teleporting an unknown two-particle entangled state is proposed. In comparison with the recent protocol (Cola et al., Phys. Lett. A 337 (2005)), the entangled state as quantum channel required by this...A scheme for teleporting an unknown two-particle entangled state is proposed. In comparison with the recent protocol (Cola et al., Phys. Lett. A 337 (2005)), the entangled state as quantum channel required by this scheme is a single, partially entangled pair, which is much easier to prepare and maintain. Furthermore, a positive operator valued measure (POVM) is adopted and all kinds of transformations performed by sender and receiver are given in detail. It is shown that the probability of successful teleportation is twice the modulus square of the smaller Schmidt coefficient of the two-particle entangled state, and the fidelity can reach one.展开更多
We present two schemes for realizing the remote preparation of a Greenberger-Horne-Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qu...We present two schemes for realizing the remote preparation of a Greenberger-Horne-Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an N-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.展开更多
We present a new scheme for investigating the usefulness of non-maximally entangled states for multi-party quantum state shar-ing in a simple and elegant manner.In our scheme,the sender,Alice shares n various probabil...We present a new scheme for investigating the usefulness of non-maximally entangled states for multi-party quantum state shar-ing in a simple and elegant manner.In our scheme,the sender,Alice shares n various probabilistic channels composed of non-maximally entangled states with n agents in a network.Our protocol involves only Bell-basis measurements,single qubit measurements,and a two-qubit unitary transformation operated by free optional agents.Our scheme is a more convenient realiza-tion because no other multipartite joint measurements are needed.Furthermore,in our scheme various probabilistic channels lessen the requirement for quantum channels,which makes it more practical for physical implementation.展开更多
In this paper, two novel schemes for deterministic joint remote state preparation(JRSP) of arbitrary single- and twoqubit states are proposed. A set of ingenious four-particle partially entangled states are construc...In this paper, two novel schemes for deterministic joint remote state preparation(JRSP) of arbitrary single- and twoqubit states are proposed. A set of ingenious four-particle partially entangled states are constructed to serve as the quantum channels. In our schemes, two senders and one receiver are involved. Participants collaborate with each other and perform projective measurements on their own particles under an elaborate measurement basis. Based on their measurement results,the receiver can reestablish the target state by means of appropriate local unitary operations deterministically. Unit success probability can be achieved independent of the channel's entanglement degree.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60261002) and the Science Foundation of Yanbian University (Grant No 2005-20).
文摘Based on entanglement swapping, a scheme for the secret sharing of an arbitrary two-particle entangled state is proposed. If the controllers do not co-operate with the eavesdropper, the eavesdropper's successful probability decreases with the number of the controllers increasing. In addition, only the Bell-state measurements are required to realize the secret sharing scheme.
基金the Hi-Tech Research and Development Program of China(2006AA01Z419)the National Natural Science Foundation of China(90604023)+2 种基金the National Laboratory for Modem Communications Science Foundation of China(9140C1101010601)the Natural Science Foundation of Beijing(4072020)the ISN Open Foundation.
文摘In this article, a protocol for the teleportation of an unknown two-panicle entanglement is proposed. The feature of the present protocol is that we utilize an asymmetric threeparticle entangled state as the quantum channel. The optimal discrimination between two nonorthogonal quantum states is adopted. It is shown that an unknown two-particle entangled state can be probabilistically teleported from the sender to the remote receiver on condition that the co-sender successfully collaborates. The fidelity in this protocol is one. In addition, the probability of the successful teleportation is calculated and all kinds of transformations performed by the sender and the receiver are provided in detail.
基金National Natural Science Foundation of China (60373059) Major Research plan of the National Natural Science Foundation of China (90604023)+1 种基金 National Laboratory for Modem Communications Science Foundation of China (51436020103DZA001) National Research Foundation for the Doctoral Program of Higher Education of China (20040013007), ISN 0pen Foundation.
文摘A scheme for teleporting an unknown two-particle entangled state is proposed. In comparison with the recent protocol (Cola et al., Phys. Lett. A 337 (2005)), the entangled state as quantum channel required by this scheme is a single, partially entangled pair, which is much easier to prepare and maintain. Furthermore, a positive operator valued measure (POVM) is adopted and all kinds of transformations performed by sender and receiver are given in detail. It is shown that the probability of successful teleportation is twice the modulus square of the smaller Schmidt coefficient of the two-particle entangled state, and the fidelity can reach one.
文摘We present two schemes for realizing the remote preparation of a Greenberger-Horne-Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an N-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.
基金the National Natural Science Foundation of China (61104002,60904034 and 61071214)the Natural Science Foundation of Jiangsu Province (BK2011283 and BK2011377)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (10KJB510024)
文摘We present a new scheme for investigating the usefulness of non-maximally entangled states for multi-party quantum state shar-ing in a simple and elegant manner.In our scheme,the sender,Alice shares n various probabilistic channels composed of non-maximally entangled states with n agents in a network.Our protocol involves only Bell-basis measurements,single qubit measurements,and a two-qubit unitary transformation operated by free optional agents.Our scheme is a more convenient realiza-tion because no other multipartite joint measurements are needed.Furthermore,in our scheme various probabilistic channels lessen the requirement for quantum channels,which makes it more practical for physical implementation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372076 and 61301171)the 111 Project(Grant No.B08038)the Fundamental Research Funds for the Central Universities,China(Grant No.K5051201021)
文摘In this paper, two novel schemes for deterministic joint remote state preparation(JRSP) of arbitrary single- and twoqubit states are proposed. A set of ingenious four-particle partially entangled states are constructed to serve as the quantum channels. In our schemes, two senders and one receiver are involved. Participants collaborate with each other and perform projective measurements on their own particles under an elaborate measurement basis. Based on their measurement results,the receiver can reestablish the target state by means of appropriate local unitary operations deterministically. Unit success probability can be achieved independent of the channel's entanglement degree.