A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is se...A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated.展开更多
A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing p...A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing process of a nonlinear course controller for ships. The method has been used for the purpose of designing two configurations of nonlinear controllers, which were then used to control the ship course. One of the configurations took dynamic characteristic of a steering gear into account during the designing stage. The parameters of the obtained nonlinear control structures have been tuned to optimise the operation of the control system. The optimisation process has been performed by means of genetic algorithms. The quality of operation of the designed control algorithms has been checked in simulation tests performed on the mathematical model of a tanker. The results of simulation experiments have been compared with the performance of the system containing a conventional proportional-derivative (PD) controller.展开更多
Currently, the power electronics-based devices, includinglarge-scale non-synchronized generators and reactivepower compensators, are widely used in power grids. This helpsintroduce the coupling interactions between th...Currently, the power electronics-based devices, includinglarge-scale non-synchronized generators and reactivepower compensators, are widely used in power grids. This helpsintroduce the coupling interactions between the devices andthe power grid, resulting in a new sub-synchronous oscillationphenomenon. It is a critical element for the stability operation ofthe power grid and its devices. In this paper, the sub-synchronousoscillation phenomenon of the power grid connected with largescalewind power generation is analyzed in detail. Then, inorder to damp the sub-synchronous oscillation, a coordinateddamping optimization control strategy for wind power generatorsand their reactive power compensators is proposed. The proposedcoordinated control strategy tracks the sub-synchronousoscillation current signal to correct the corresponding controlsignal, which increases the damping of power electronics. Theresponse characteristics of the proposed control strategy areanalyzed, and a self-optimization parameter tuning method basedon sensitivity analysis is proposed. The simulation results validatethe effectiveness and the availability of the proposed controlstrategy.展开更多
The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
基金supported by Program for New Century Excellent Talents in University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated.
基金supported by Polish Ministry of Science and Higher Education (No. N514 015 32/1712)
文摘A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing process of a nonlinear course controller for ships. The method has been used for the purpose of designing two configurations of nonlinear controllers, which were then used to control the ship course. One of the configurations took dynamic characteristic of a steering gear into account during the designing stage. The parameters of the obtained nonlinear control structures have been tuned to optimise the operation of the control system. The optimisation process has been performed by means of genetic algorithms. The quality of operation of the designed control algorithms has been checked in simulation tests performed on the mathematical model of a tanker. The results of simulation experiments have been compared with the performance of the system containing a conventional proportional-derivative (PD) controller.
基金the NationalNatural Science Foundation of China under Grant No.51577174.
文摘Currently, the power electronics-based devices, includinglarge-scale non-synchronized generators and reactivepower compensators, are widely used in power grids. This helpsintroduce the coupling interactions between the devices andthe power grid, resulting in a new sub-synchronous oscillationphenomenon. It is a critical element for the stability operation ofthe power grid and its devices. In this paper, the sub-synchronousoscillation phenomenon of the power grid connected with largescalewind power generation is analyzed in detail. Then, inorder to damp the sub-synchronous oscillation, a coordinateddamping optimization control strategy for wind power generatorsand their reactive power compensators is proposed. The proposedcoordinated control strategy tracks the sub-synchronousoscillation current signal to correct the corresponding controlsignal, which increases the damping of power electronics. Theresponse characteristics of the proposed control strategy areanalyzed, and a self-optimization parameter tuning method basedon sensitivity analysis is proposed. The simulation results validatethe effectiveness and the availability of the proposed controlstrategy.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.