[目的]探讨CRM197能否增强H22肝癌细胞裂解物疫苗的抗肿瘤活性。[方法]反复冻融H22细胞制备裂解物,与CRM197偶联,制备H22-CRM197疫苗,以小鼠皮下移植瘤模型考察疫苗抗肿瘤活性,并对免疫学机制进行探讨。[结果]与PBS组相比,H22-CRM197免...[目的]探讨CRM197能否增强H22肝癌细胞裂解物疫苗的抗肿瘤活性。[方法]反复冻融H22细胞制备裂解物,与CRM197偶联,制备H22-CRM197疫苗,以小鼠皮下移植瘤模型考察疫苗抗肿瘤活性,并对免疫学机制进行探讨。[结果]与PBS组相比,H22-CRM197免疫显著降低了荷瘤小鼠肿瘤重量(0.53±0.20 g VS 2.04±0.43 g,p<0.01);与PBS组比较,H22-CRM197组小鼠免疫血清中检测到高滴度的抗-H22抗体(p<0.01);H22-CRM197免疫能够有效地刺激脾淋巴细胞的增殖并诱导产生了明显靶向H22细胞的细胞毒性T淋巴细胞杀伤作用。[结论]CRM197可以显著增强H22肝癌细胞裂解物疫苗的抗肿瘤活性。展开更多
BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for ch...BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such antitumor activity can be increased using cell lysates derived from an honokioltreated cholangiocarcinoma cell line (KKU-213L5). AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.展开更多
Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer. Combining with appropriate adjuvants can enhance the weak immunogenic properties ...Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer. Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL). In this study, diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde, and the constructed cancer cell vaccine was named DT-TCL-M2. Subcutaneous injection of DT-TCL-M2in mice effectively elicited tumor-specific polyclonal immune responses, including humoral and cellular immune responses. High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses. The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells. Moreover, the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model. DT-TCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model. These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo. Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection.展开更多
文摘[目的]探讨CRM197能否增强H22肝癌细胞裂解物疫苗的抗肿瘤活性。[方法]反复冻融H22细胞制备裂解物,与CRM197偶联,制备H22-CRM197疫苗,以小鼠皮下移植瘤模型考察疫苗抗肿瘤活性,并对免疫学机制进行探讨。[结果]与PBS组相比,H22-CRM197免疫显著降低了荷瘤小鼠肿瘤重量(0.53±0.20 g VS 2.04±0.43 g,p<0.01);与PBS组比较,H22-CRM197组小鼠免疫血清中检测到高滴度的抗-H22抗体(p<0.01);H22-CRM197免疫能够有效地刺激脾淋巴细胞的增殖并诱导产生了明显靶向H22细胞的细胞毒性T淋巴细胞杀伤作用。[结论]CRM197可以显著增强H22肝癌细胞裂解物疫苗的抗肿瘤活性。
基金the grant from the Thailand Research Fund,No.BRG6180010Naresuan University Research Grant,No.R2561B001
文摘BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such antitumor activity can be increased using cell lysates derived from an honokioltreated cholangiocarcinoma cell line (KKU-213L5). AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.
基金supported by the China National Science Fund Committee (No. 30872393)Postgraduate Innovation Foundation of Simcere Pharmaceutical Group(No. CX10B-004XS)
文摘Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer. Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL). In this study, diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde, and the constructed cancer cell vaccine was named DT-TCL-M2. Subcutaneous injection of DT-TCL-M2in mice effectively elicited tumor-specific polyclonal immune responses, including humoral and cellular immune responses. High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses. The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells. Moreover, the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model. DT-TCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model. These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo. Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection.