Purpose: Although proximal stability of the trunk is a prerequisite for balance and gait, to determine the role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke is yet unknown...Purpose: Although proximal stability of the trunk is a prerequisite for balance and gait, to determine the role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke is yet unknown. Method: Fifteen sub-jects (post-stroke duration (3.53 ± 2.98) years) who had the ability to walk 10 meters independently with or without a walking aid;scoring ≤ 21 on Trunk Impairment Scale (TIS), participated in a selective trunk muscle exercise regime, consisting of 45 minutes training per day, four days a week, and for four weeks duration in an outpatient stroke reha-bilitation centre. Results: The overall effect size index for trunk rehabilitation was 1.07. This study showed large effect size index for Trunk Impairment Scale (1.75), Berg Balance Scale (1.65) than for gait variables (0.65). After trunk rehabilitation, there was a significant improvement for gait speed (p= 0.015), cadence (p= 0.001) and gait symmetry (p=0.019) in patients with chronic stroke. In addition, all the spatial gait parameters had a significant change post-intervention. There was no significant change in temporal gait parameters with the exception of affected single limb support time. The level of significance was set at p < 0.05. Conclusion: The exercises consisted of selective trunk movement of the upper and the lower part of trunk had shown larger effect size index for trunk control and balance than for gait in patients with chronic stroke. Future randomized controlled studies incorporating large sample size would provide insight into the effectiveness and clinical relevance of this intervention.展开更多
Trunk function has been identified as an important early predictor of functional outcome after stroke and the same deteriorates on both contralateral and ipsilateral sides of the body following stroke. The primary con...Trunk function has been identified as an important early predictor of functional outcome after stroke and the same deteriorates on both contralateral and ipsilateral sides of the body following stroke. The primary contribution of the trunk muscles is to allow the body to remain upright, adjust weight shifts, and control movements against constant pull of gravity and is considered central key point of the body. Proximal stability of the trunk is a pre-requisite for distal limb mobility, balance, gait and functional activities and its positive correlation in hemiplegia has been demonstrated in a cross- sectional study. Both isokinetic and handheld dynamometer muscle strength testing demonstrated the weakness of bilateral trunk flexors, extensors and rotator muscles in both acute and chronic hemiplegic patients. This was confirmed by electromyography analysis which identified poor bilateral trunk muscles activity in patients with stroke. Trunk impairment scale is sensitive to evaluate the selective muscle control of upper and lower trunk, and it has been reported that lateral flexion of the trunk is easier than rotation of the trunk and the clinical observation concurs to the difficulty in lower trunk rotation of stroke patients. However, trunk exercises given early after stroke could produce enhanced balance performance post- stroke. This review attempts to report the evidence supporting the involvement of the trunk and its influence on balance and functional performance in post-stroke hemiplegia.展开更多
文摘Purpose: Although proximal stability of the trunk is a prerequisite for balance and gait, to determine the role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke is yet unknown. Method: Fifteen sub-jects (post-stroke duration (3.53 ± 2.98) years) who had the ability to walk 10 meters independently with or without a walking aid;scoring ≤ 21 on Trunk Impairment Scale (TIS), participated in a selective trunk muscle exercise regime, consisting of 45 minutes training per day, four days a week, and for four weeks duration in an outpatient stroke reha-bilitation centre. Results: The overall effect size index for trunk rehabilitation was 1.07. This study showed large effect size index for Trunk Impairment Scale (1.75), Berg Balance Scale (1.65) than for gait variables (0.65). After trunk rehabilitation, there was a significant improvement for gait speed (p= 0.015), cadence (p= 0.001) and gait symmetry (p=0.019) in patients with chronic stroke. In addition, all the spatial gait parameters had a significant change post-intervention. There was no significant change in temporal gait parameters with the exception of affected single limb support time. The level of significance was set at p < 0.05. Conclusion: The exercises consisted of selective trunk movement of the upper and the lower part of trunk had shown larger effect size index for trunk control and balance than for gait in patients with chronic stroke. Future randomized controlled studies incorporating large sample size would provide insight into the effectiveness and clinical relevance of this intervention.
文摘Trunk function has been identified as an important early predictor of functional outcome after stroke and the same deteriorates on both contralateral and ipsilateral sides of the body following stroke. The primary contribution of the trunk muscles is to allow the body to remain upright, adjust weight shifts, and control movements against constant pull of gravity and is considered central key point of the body. Proximal stability of the trunk is a pre-requisite for distal limb mobility, balance, gait and functional activities and its positive correlation in hemiplegia has been demonstrated in a cross- sectional study. Both isokinetic and handheld dynamometer muscle strength testing demonstrated the weakness of bilateral trunk flexors, extensors and rotator muscles in both acute and chronic hemiplegic patients. This was confirmed by electromyography analysis which identified poor bilateral trunk muscles activity in patients with stroke. Trunk impairment scale is sensitive to evaluate the selective muscle control of upper and lower trunk, and it has been reported that lateral flexion of the trunk is easier than rotation of the trunk and the clinical observation concurs to the difficulty in lower trunk rotation of stroke patients. However, trunk exercises given early after stroke could produce enhanced balance performance post- stroke. This review attempts to report the evidence supporting the involvement of the trunk and its influence on balance and functional performance in post-stroke hemiplegia.