期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Truncated Geometric Bootstrap Method for Time Series Stationary Process
1
作者 T. O. Olatayo 《Applied Mathematics》 2014年第13期2057-2061,共5页
This paper introduced a bootstrap method called truncated geometric bootstrap method for time series stationary process. We estimate the parameters of a geometric distribution which has been truncated as a probability... This paper introduced a bootstrap method called truncated geometric bootstrap method for time series stationary process. We estimate the parameters of a geometric distribution which has been truncated as a probability model for the bootstrap algorithm. This probability model was used in resampling blocks of random length, where the length of each blocks has a truncated geometric distribution. The method was able to determine the block sizes b and probability p attached to its random selections. The mean and variance were estimated for the truncated geometric distribution and the bootstrap algorithm developed based on the proposed probability model. 展开更多
关键词 truncated geometric bootstrap method STATIONARY Process MOVING Block and geometric STATIONARY bootstrap method
下载PDF
On the Application of Bootstrap Method to Stationary Time Series Process
2
作者 T. O. Olatayo 《American Journal of Computational Mathematics》 2013年第1期61-65,共5页
This article introduces a resampling procedure called the truncated geometric bootstrap method for stationary time series process. This procedure is based on resampling blocks of random length, where the length of eac... This article introduces a resampling procedure called the truncated geometric bootstrap method for stationary time series process. This procedure is based on resampling blocks of random length, where the length of each blocks has a truncated geometric distribution and capable of determining the probability p and number of block b. Special attention is given to problems with dependent data, and application with real data was carried out. Autoregressive model was fitted and the choice of order determined by Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The normality test was carried out on the residual variance of the fitted model using Jargue-Bera statistics, and the best model was determined based on root mean square error of the forecasting values. The bootstrap method gives a better and a reliable model for predictive purposes. All the models for the different block sizes are good. They preserve and maintain stationary data structure of the process and are reliable for predictive purposes, confirming the efficiency of the proposed method. 展开更多
关键词 truncated geometric bootstrap method AUTOREGRESSIVE Model Akaike INFORMATION CRITERION (AIC) Bayesian INFORMATION CRITERION (BIC) Root Mean Square Error ()
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部