The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the br...The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the breakthroughs and properties of quantum calculators which make vulnerable existing cryptosystems. In this paper, we propose a random number generation model based on evaluation of the thermal noise power of the volume elements of an electronic system with a volume of 58.83 cm<sup>3</sup>. We prove through the sampling of the temperature of each volume element that it is difficult for an attacker to carry out an exploit. In 12 seconds, we generate for 7 volume elements, a stream of randomly generated keys of 187 digits that will be transmitted from source to destination through the properties of quantum cryptography.展开更多
文摘The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the breakthroughs and properties of quantum calculators which make vulnerable existing cryptosystems. In this paper, we propose a random number generation model based on evaluation of the thermal noise power of the volume elements of an electronic system with a volume of 58.83 cm<sup>3</sup>. We prove through the sampling of the temperature of each volume element that it is difficult for an attacker to carry out an exploit. In 12 seconds, we generate for 7 volume elements, a stream of randomly generated keys of 187 digits that will be transmitted from source to destination through the properties of quantum cryptography.