基于2007~2012年TRMM卫星上搭载的降水雷达提供的雷达反射率因子、降水率、降水类型等产品,结合ECMWF提供的再分析数据资料,分析了全球热带海洋地区平均降水率、400 h Pa垂直速度、850 h Pa相对湿度和下对流层稳定度的时空分布特征.根据...基于2007~2012年TRMM卫星上搭载的降水雷达提供的雷达反射率因子、降水率、降水类型等产品,结合ECMWF提供的再分析数据资料,分析了全球热带海洋地区平均降水率、400 h Pa垂直速度、850 h Pa相对湿度和下对流层稳定度的时空分布特征.根据400 h Pa垂直速度的季节差异确定了4个子研究区及相应对比季节,给出了对比季节内浅对流单体、层云、对流云3种降水系统降水量、降水面积、降水强度以及垂直结构上的差异.结果表明:(1)热带海洋地区平均降水率与400 h Pa上升速度在时空分布上存在一个显著的正相关,即400 h Pa上升速度越强的地区平均降水率越大;(2)4个子研究区内层云降水对区域累积降水面积贡献率最大(年均值均超过50%),对流云降水次之(约30%),而对流云降水对区域累积降水量贡献率最大(约65%),层云降水次之(约25%);(3)400 h Pa上升速度较强时,4个子研究区中3类降水系统的累积降水面积、累积降水量都有所增加,但降水强度以及降水系统垂直结构的变化存在差异,其中对流云降水强度一致增大且其垂直结构上的发展更旺盛;(4)对流云降水系统的雨顶高度、雷达反射率重心以及30 d BZ回波顶高随着400 h Pa上升速度的增强以及850 h Pa相对湿度的增加而迅速抬升,同时随着下对流层稳定度的降低有所抬升,但变化率较小.说明影响对流降水系统垂直结构的主要气象条件是400 h Pa上升速度和850 h Pa相对湿度.展开更多
Evapotranspiration(ET) is a critical component of the global hydrological cycle, and it has a large impact on water resource management as it affects the availability of freshwater resources. It is important to unders...Evapotranspiration(ET) is a critical component of the global hydrological cycle, and it has a large impact on water resource management as it affects the availability of freshwater resources. It is important to understand the hydrological cycle for the water resources planning and management. This study used Moderate Resolution Imaging Spectroradiometer(MODIS) satellite derived ET, and potential evapotranspiration(PET) and Tropical Rainfall Measuring Mission(TRMM) satellite derived precipitation datasets to assess the spatial and temporal distributions of ET, PET, and precipitation during the study period at Three Gorges Reservoir(TGR) region. Based on the topographic variations and land-use/land-cover distributions, the study region which includes five counties of Hubei Province and nineteen counties of Chongqing Municipality was divided into four study zones. The ET and precipitation data were evaluated using in situ observations. The ET, PET, and precipitation data were compared to analyze the spatial and long-term(2001-2016) temporal distributions of average annual ET, PET, and precipitation, and to understand the relationships between them in the study region. The results showed that each selected zone had highest ET at the counties with the Yangtze River passing through whereas lowest at the counties which were located away from the river. Results also showed increasing trends in ET and PET from south-west to north-east in the study region. Analysis showed TGR had a significant impact on spatial and temporal distributions of ET and PET in the study region. Therefore, this study helps to understand the impact of TGR on spatial and temporal distributions of ET and PET during and after the construction.展开更多
Based on the Tropical Rainfall Measuring Mission(TRMM) precipitation radar observations, wide convection(WC) is defined as contiguous convective echoes over 40 d BZ, accompanied with a near surface rainfall area e...Based on the Tropical Rainfall Measuring Mission(TRMM) precipitation radar observations, wide convection(WC) is defined as contiguous convective echoes over 40 d BZ, accompanied with a near surface rainfall area exceeding 1000 km^2. In Southeast China, the maximal occurrence frequency of WC takes place over the flat land region in the central plain of East China during the summer monsoon period of 1998–2010. When WC occurs in this region, the 500-h Pa atmospheric fields are categorized into three patterns by using an objective classification method, i.e., the deep-trough-control(DTr) pattern, the subtropical-highmaintenance(STH) pattern, and the typhoon-effect(Typh) pattern, which respectively accounts for 20.8%,52.8%, and 26.4% of the total WC occurrences. The DTr pattern starts to emerge the earliest(16–31 May)and occurs the most often in the second half of June; the STH pattern has a significant occurrence peak in the first half of July; the Typh pattern occurs mostly in July and August.Nearly all WC occurrences in this region are associated with thunderstorms, due to large convective available potential energy and abundant moisture. Among the three synoptic patterns, the DTr pattern features the driest and coldest air in the region, leading to the least occurrences of short-duration heavy rainfall. Strong winds occur the most often under the DTr pattern, probably owing to the largest difference in air humidity between the mid and low troposphere. Hail at the surface is rare for all occurrences of WC,which is probably related to the humid environmental air under all weather patterns and the high(〉 5 km)freezing level under the STH pattern.展开更多
High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale...High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.展开更多
In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the ...In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. According to the 3-orbit observations of 5- h duration from the TRMM satellite, the variation characteristics of the precipitation structures as well as cloud top temperature and microwave signals of the precipitating cloud were comprehensively analyzed during the evolution of hailstorm. The results show that the precipitation is obviously converted from early hail cloud with strong convection into the later storm cloud with weak convection. For hail cloud, there exists some strong convective cells, and the heavy solid precipitation is shown at the middle-top levels so that the contribution of rainfall amount above the freezing-layer to the column precipitation amount is rather larger than that within the melting-layer. However, for storm cloud, the convective cells are surrounded by the large area of stratiform precipitation, and the precipitation thickness gradually decreases, and the rainfall above the freezing-layer obviously reduces and the contribution of rainfall amount within the melting-layer rapidly increases. Therefore, the larger ratio of rainfall amount above the freezing layer to column precipitation amount is, the more convective the cloud is; reversely, the larger proportion of rainfall below the melting layer is, the more stable the stratiform cloud is. The different changing trends of microwave signals at different precipitation stages show that it is better to consider the structures and stages of precipitating cloud to choose the optimal microwave channels to retrieve surface rainfall.展开更多
With the unprecedented spaceborne precipitation radar(PR),the Tropical Rainfall Measuring Mission(TRMM) satellite has collected high-quality precipitation measurements for over ten years.The TRMM/PR data are nowadays ...With the unprecedented spaceborne precipitation radar(PR),the Tropical Rainfall Measuring Mission(TRMM) satellite has collected high-quality precipitation measurements for over ten years.The TRMM/PR data are nowadays extensively exploited in numerous meteorological and hydrological fields.Yet an artificial orbit boost of the TRMM satellite in August 2001 modulated the observation parameters,which inevitably affects climatological applications of the PR data and needs to be clarified.This study investigates the orbit boost effects of the TRMM satellite on the PR-derived precipitation characteristics.Both the potential impacts on precipitation frequency(PF) and precipitation intensity(PI) are carefully analyzed.The results show that the total PF decreases by 8.3% and PI increases by 4.0% over the tropics after the orbit boost.Such changes significantly exceed the natural variabilities and imply the strong effects of orbit boost on precipitation characteristics.The impacts on stratiform precipitation and convective precipitation are inconsistent,which is attributed to their distinct precipitation features.Further analysis reveal that the increased PI of stratiform precipitation is mainly due to the decreased frequencies of light precipitation,while the semi-constant PI of convective precipitation is caused by the concurrently decreased frequencies of light and heavy precipitation.A modification is applied to the post-boost PR precipitation data to retrieve the actual trends of tropical precipitation characteristics.It is found that the PI of total-precipitation approximately keeps invariable from 1998 to 2005.The total PF has no obvious trend over tropical oceans but decreases considerably over tropical lands.展开更多
Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their ...Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.6展开更多
The ability of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) for flooding and soil wetness detection has been demonstrated in this study.On the basis of TMI measurements,four methods,the classi...The ability of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) for flooding and soil wetness detection has been demonstrated in this study.On the basis of TMI measurements,four methods,the classification method,the soil wetness index (SWI) method. the polarization difference index (PDI) method,and the polarization ratio index (PRI) method, were brought out to monitor flooding and study soil wetness in the Changjiang and Huaihe River Basins during the summer 1998.Compared with the images provided by L-band Synthetic Aperture Radar (L-SAR) and Radar Satellite (Radarsat) and the figures derived from daily rainfall data based on the Z-index method,the detection of flooding and soil wetness by TMI was proved to be feasible.展开更多
Satellite-derived sea surface temperatures(SSTs) from the tropical rainfall measuring mission(TRMM)microwave imager(TMI) and the advanced microwave scanning radiometer for the earth observing system(AMSR-E) we...Satellite-derived sea surface temperatures(SSTs) from the tropical rainfall measuring mission(TRMM)microwave imager(TMI) and the advanced microwave scanning radiometer for the earth observing system(AMSR-E) were compared with non-pumped near-surface temperatures(NSTs) obtained from Argo profiling floats over the global oceans. Factors that might cause temperature differences were examined, including wind speed, columnar water vapor, liquid cloud water, and geographic location. The results show that both TMI and AMSR-E SSTs are highly correlated with the Argo NSTs; however, at low wind speeds, they are on average warmer than the Argo NSTs. The TMI performs slightly better than the AMSR-E at low wind speeds, whereas the TMI SST retrievals might be poorly calibrated at high wind speeds. The temperature differences indicate a warm bias of the TMI/AMSR-E when columnar water vapor is low, which can indicate that neither TMI nor AMSR-E SSTs are well calibrated at high latitudes. The SST in the Kuroshio Extension region has higher variability than in the Kuroshio region. The variability of the temperature difference between the satellite-retrieved SSTs and the Argo NSTs is lower in the Kuroshio Extension during spring. At low wind speeds, neither TMI nor AMSR-E SSTs are well calibrated, although the TMI performs better than the AMSR-E.展开更多
文摘基于2007~2012年TRMM卫星上搭载的降水雷达提供的雷达反射率因子、降水率、降水类型等产品,结合ECMWF提供的再分析数据资料,分析了全球热带海洋地区平均降水率、400 h Pa垂直速度、850 h Pa相对湿度和下对流层稳定度的时空分布特征.根据400 h Pa垂直速度的季节差异确定了4个子研究区及相应对比季节,给出了对比季节内浅对流单体、层云、对流云3种降水系统降水量、降水面积、降水强度以及垂直结构上的差异.结果表明:(1)热带海洋地区平均降水率与400 h Pa上升速度在时空分布上存在一个显著的正相关,即400 h Pa上升速度越强的地区平均降水率越大;(2)4个子研究区内层云降水对区域累积降水面积贡献率最大(年均值均超过50%),对流云降水次之(约30%),而对流云降水对区域累积降水量贡献率最大(约65%),层云降水次之(约25%);(3)400 h Pa上升速度较强时,4个子研究区中3类降水系统的累积降水面积、累积降水量都有所增加,但降水强度以及降水系统垂直结构的变化存在差异,其中对流云降水强度一致增大且其垂直结构上的发展更旺盛;(4)对流云降水系统的雨顶高度、雷达反射率重心以及30 d BZ回波顶高随着400 h Pa上升速度的增强以及850 h Pa相对湿度的增加而迅速抬升,同时随着下对流层稳定度的降低有所抬升,但变化率较小.说明影响对流降水系统垂直结构的主要气象条件是400 h Pa上升速度和850 h Pa相对湿度.
文摘Evapotranspiration(ET) is a critical component of the global hydrological cycle, and it has a large impact on water resource management as it affects the availability of freshwater resources. It is important to understand the hydrological cycle for the water resources planning and management. This study used Moderate Resolution Imaging Spectroradiometer(MODIS) satellite derived ET, and potential evapotranspiration(PET) and Tropical Rainfall Measuring Mission(TRMM) satellite derived precipitation datasets to assess the spatial and temporal distributions of ET, PET, and precipitation during the study period at Three Gorges Reservoir(TGR) region. Based on the topographic variations and land-use/land-cover distributions, the study region which includes five counties of Hubei Province and nineteen counties of Chongqing Municipality was divided into four study zones. The ET and precipitation data were evaluated using in situ observations. The ET, PET, and precipitation data were compared to analyze the spatial and long-term(2001-2016) temporal distributions of average annual ET, PET, and precipitation, and to understand the relationships between them in the study region. The results showed that each selected zone had highest ET at the counties with the Yangtze River passing through whereas lowest at the counties which were located away from the river. Results also showed increasing trends in ET and PET from south-west to north-east in the study region. Analysis showed TGR had a significant impact on spatial and temporal distributions of ET and PET in the study region. Therefore, this study helps to understand the impact of TGR on spatial and temporal distributions of ET and PET during and after the construction.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417202)National Natural Science Foundation of China(41175049 and 41221064)+1 种基金National Science and Technology Support Program of China(2012BAC22B03)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2012Y001)
文摘Based on the Tropical Rainfall Measuring Mission(TRMM) precipitation radar observations, wide convection(WC) is defined as contiguous convective echoes over 40 d BZ, accompanied with a near surface rainfall area exceeding 1000 km^2. In Southeast China, the maximal occurrence frequency of WC takes place over the flat land region in the central plain of East China during the summer monsoon period of 1998–2010. When WC occurs in this region, the 500-h Pa atmospheric fields are categorized into three patterns by using an objective classification method, i.e., the deep-trough-control(DTr) pattern, the subtropical-highmaintenance(STH) pattern, and the typhoon-effect(Typh) pattern, which respectively accounts for 20.8%,52.8%, and 26.4% of the total WC occurrences. The DTr pattern starts to emerge the earliest(16–31 May)and occurs the most often in the second half of June; the STH pattern has a significant occurrence peak in the first half of July; the Typh pattern occurs mostly in July and August.Nearly all WC occurrences in this region are associated with thunderstorms, due to large convective available potential energy and abundant moisture. Among the three synoptic patterns, the DTr pattern features the driest and coldest air in the region, leading to the least occurrences of short-duration heavy rainfall. Strong winds occur the most often under the DTr pattern, probably owing to the largest difference in air humidity between the mid and low troposphere. Hail at the surface is rare for all occurrences of WC,which is probably related to the humid environmental air under all weather patterns and the high(〉 5 km)freezing level under the STH pattern.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951101)the National Natural Science Foundation of China (Grants No. 50979022 and 50679018)+2 种基金the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT0717)the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Hohai University (Grant No. 1069-50986312)the Open Fund Approval of the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University (Grant No. SKLH-OF-0807)
文摘High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.
基金the National Natural Science Foundation of China under Grant No. 40605011the Chinese Ministry of Science and Technology under Grant No. 2001CB309402.
文摘In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. According to the 3-orbit observations of 5- h duration from the TRMM satellite, the variation characteristics of the precipitation structures as well as cloud top temperature and microwave signals of the precipitating cloud were comprehensively analyzed during the evolution of hailstorm. The results show that the precipitation is obviously converted from early hail cloud with strong convection into the later storm cloud with weak convection. For hail cloud, there exists some strong convective cells, and the heavy solid precipitation is shown at the middle-top levels so that the contribution of rainfall amount above the freezing-layer to the column precipitation amount is rather larger than that within the melting-layer. However, for storm cloud, the convective cells are surrounded by the large area of stratiform precipitation, and the precipitation thickness gradually decreases, and the rainfall above the freezing-layer obviously reduces and the contribution of rainfall amount within the melting-layer rapidly increases. Therefore, the larger ratio of rainfall amount above the freezing layer to column precipitation amount is, the more convective the cloud is; reversely, the larger proportion of rainfall below the melting layer is, the more stable the stratiform cloud is. The different changing trends of microwave signals at different precipitation stages show that it is better to consider the structures and stages of precipitating cloud to choose the optimal microwave channels to retrieve surface rainfall.
基金supported by the National Natural Science Foundation of China(40730950,40805007,41075041 and 41175032)the National Basic Research Program of China(2010CBS28601)the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-YW-Q11-04)
文摘With the unprecedented spaceborne precipitation radar(PR),the Tropical Rainfall Measuring Mission(TRMM) satellite has collected high-quality precipitation measurements for over ten years.The TRMM/PR data are nowadays extensively exploited in numerous meteorological and hydrological fields.Yet an artificial orbit boost of the TRMM satellite in August 2001 modulated the observation parameters,which inevitably affects climatological applications of the PR data and needs to be clarified.This study investigates the orbit boost effects of the TRMM satellite on the PR-derived precipitation characteristics.Both the potential impacts on precipitation frequency(PF) and precipitation intensity(PI) are carefully analyzed.The results show that the total PF decreases by 8.3% and PI increases by 4.0% over the tropics after the orbit boost.Such changes significantly exceed the natural variabilities and imply the strong effects of orbit boost on precipitation characteristics.The impacts on stratiform precipitation and convective precipitation are inconsistent,which is attributed to their distinct precipitation features.Further analysis reveal that the increased PI of stratiform precipitation is mainly due to the decreased frequencies of light precipitation,while the semi-constant PI of convective precipitation is caused by the concurrently decreased frequencies of light and heavy precipitation.A modification is applied to the post-boost PR precipitation data to retrieve the actual trends of tropical precipitation characteristics.It is found that the PI of total-precipitation approximately keeps invariable from 1998 to 2005.The total PF has no obvious trend over tropical oceans but decreases considerably over tropical lands.
基金Under the auspices of the National Natural Science Foundation of China(No.41661099)the National Key Research and Development Program of China(No.Grant 2016YFA0601601)
文摘Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.6
基金the National Key Program of Science and Technology of China (2001BA610A-06-05)the National Natural Science Foundation of China (40375001)the Science Foundation of China Meteorological Administration and Jilin Provincial Government Joint Laboratory for Weather Modification
文摘The ability of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) for flooding and soil wetness detection has been demonstrated in this study.On the basis of TMI measurements,four methods,the classification method,the soil wetness index (SWI) method. the polarization difference index (PDI) method,and the polarization ratio index (PRI) method, were brought out to monitor flooding and study soil wetness in the Changjiang and Huaihe River Basins during the summer 1998.Compared with the images provided by L-band Synthetic Aperture Radar (L-SAR) and Radar Satellite (Radarsat) and the figures derived from daily rainfall data based on the Z-index method,the detection of flooding and soil wetness by TMI was proved to be feasible.
基金The National Basic Research Program(973 Program)of China under contract No.2013CB430301the National Natural Science Foundation of China under contract Nos 41440039,41206022 and 41406022the Public Science and Technology Research Funds Projects of Ocean under contract No.201305032
文摘Satellite-derived sea surface temperatures(SSTs) from the tropical rainfall measuring mission(TRMM)microwave imager(TMI) and the advanced microwave scanning radiometer for the earth observing system(AMSR-E) were compared with non-pumped near-surface temperatures(NSTs) obtained from Argo profiling floats over the global oceans. Factors that might cause temperature differences were examined, including wind speed, columnar water vapor, liquid cloud water, and geographic location. The results show that both TMI and AMSR-E SSTs are highly correlated with the Argo NSTs; however, at low wind speeds, they are on average warmer than the Argo NSTs. The TMI performs slightly better than the AMSR-E at low wind speeds, whereas the TMI SST retrievals might be poorly calibrated at high wind speeds. The temperature differences indicate a warm bias of the TMI/AMSR-E when columnar water vapor is low, which can indicate that neither TMI nor AMSR-E SSTs are well calibrated at high latitudes. The SST in the Kuroshio Extension region has higher variability than in the Kuroshio region. The variability of the temperature difference between the satellite-retrieved SSTs and the Argo NSTs is lower in the Kuroshio Extension during spring. At low wind speeds, neither TMI nor AMSR-E SSTs are well calibrated, although the TMI performs better than the AMSR-E.