期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation 被引量:4
1
作者 Huimin Liu Jiahui Li +3 位作者 Lijuan Wang Yawen Tang Bao Yu Xia Yu Chen 《Nano Research》 SCIE EI CAS CSCD 2017年第10期3324-3332,共9页
Although nanostructures based on noble metal alloys are widely utilized in (electro)catalysis, their low-temperature synthesis remains an enormous challenge due to the different Nernst equilibrium potentials of meta... Although nanostructures based on noble metal alloys are widely utilized in (electro)catalysis, their low-temperature synthesis remains an enormous challenge due to the different Nernst equilibrium potentials of metal precursors. Herein, we describe the successful synthesis of trimetallic PtRhNi alloy nanoassemblies (PtRhNi-ANAs) with tunable Pt/Rh ratios using a simple mixed cyanogel reduction method and provide a detailed characterization of their chemical composition, morphology, and structure. Additionally, the electrochemical properties of PtRhNi-ANAs are examined by cyclic voltammetry, revealing composition- dependent electrocatalytic activity in the ethanol oxidation reaction (EOR). Compared to a commercial Pt black electrocatalyst, optimized Pt3Rh1Ni2-ANAs display remarkably enhanced EOR electrocatalytic performance in alkaline media. 展开更多
关键词 cyanogel trimetallic alloy ELECTROCATALYSIS activity ethanol oxidation reaction
原文传递
Hydrogen evolution-assisted one-pot aqueous synthesis of hierarchical trimetallic PdNiRu nanochains for hydrazine oxidation reaction 被引量:1
2
作者 Tao Yuan Aijun Wang +2 位作者 Keming Fang Zhigang Wang Jiuju Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1231-1237,共7页
A hydrogen evolution-assisted one-pot aqueous approach was developed for facile synthesis of trimetallic Pd Ni Ru alloy nanochain-like networks(Pd Ni Ru NCNs) by only using KBHas the reductant, without any specific ... A hydrogen evolution-assisted one-pot aqueous approach was developed for facile synthesis of trimetallic Pd Ni Ru alloy nanochain-like networks(Pd Ni Ru NCNs) by only using KBHas the reductant, without any specific additive(e.g. surfactant, polymer, template or seed). The products were mainly investigated by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The hierarchical architectures were formed by the oriented assembly growth and the diffusioncontrolled deposition in the presence of many in-situ generated hydrogen bubbles. The architectures had the largest electrochemically active surface area(ECSA) of 84.32 mgPdthan Pd Ni nanoparticles(NPs,65.23 mgPd), Pd Ru NPs(23.12 mgPd), Ni Ru NPs(nearly zero), and commercial Pd black(6.01 mgPd), outperforming the referenced catalysts regarding the catalytic characters for hydrazine oxygen reaction(HOR). The synthetic route provides new insight into the preparation of other trimetallic nanocatalysts in fuel cells. 展开更多
关键词 trimetallic alloy Nanochain networks Hydrogen evolution-assisted synthesis Diffusion-controlled deposition Hydrazine oxidation reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部