Simultaneous removal of hydrogen sulfide (H2S) and volatile organic sulfur compounds (VOSCs) in off-gas mixture from a wastewater treatment plant (WWTP) is difficult due to the occasional inhibitory effects of H2S on ...Simultaneous removal of hydrogen sulfide (H2S) and volatile organic sulfur compounds (VOSCs) in off-gas mixture from a wastewater treatment plant (WWTP) is difficult due to the occasional inhibitory effects of H2S on VOSC degradation. In this study, a two-stage bio-trickling filter (BTF) system was developed to treat off-gas mixture from a real WWTP facility. At an empty bed retention time of 40 s, removal efficiencies of H2S, methanethiol, dimethyl sulfide, and dimethyl disulfide were 90.1, 88.4, 85.8 and 61.8%, respectively. Furthermore, the effect of lifting load shock on system performance was investigated and results indicated that removal of both H2S and VOSCs was slightly affected. Illumina Miseq sequencing revealed that the microbial community of first-stage BTF contained high abundance of H2S-affinity genera including Acidithiobacillus (51.43%), Metallibacterium (25.35%), and Thionomas (8.08%). Analysis of mechanism demonstrated that first stage of BTF removed 86.1% of H2S, mitigating the suppression on VOSC degradation in second stage of BTF. Overall, the twostage BTF system, an innovative bioprocess, can simultaneously remove H2S and VOSC.展开更多
The discharge of steroid estroens from sewage treatment works (STW) is to be regulated by Environmental Quality Standard in the UK,thus requiring the understanding of removal characteristics of steroid estroens in tri...The discharge of steroid estroens from sewage treatment works (STW) is to be regulated by Environmental Quality Standard in the UK,thus requiring the understanding of removal characteristics of steroid estroens in trickling filters to benefit UK water industry with trickling filters used in 75% STWs. Two pilot-scale trickling filters were operated in parallel to treat synthetic sewage spiked with oestrone (E1),oestradiol (E2) and 17α-ethinyl oestradiol (EE2) at environmentally related concentrations. Control experiments show that biodegradation is the dominant removal mechanism although adsorption onto biofilm solids prior to biodegradation would be part of the overall mechanisms of estrogen removal. Approximately 44.7%-58.9% is removed by the pilot trickling filter normally operated,whilst the 1:1 recirculation increases 29.0%-32.2% estrogen removals by improved wetting rate and hydraulic retention time supported by tracer experiment with lithium chloride. Extra feed solids with 32.0% higher suspended solids levels inhibited estrogen removals by 10.8%-34.4% rather than helping bridge adsorption to the biofilm,and the change of particle characteristics with higher adsorption potency would benefit the removal.展开更多
A bench-scale experiment for control of hydrogen sulfide (H2S) emissions was carried out continuously for nearly four months by using bio-trickling filter packed with ZX01 stuffing. The results suggested that the bi...A bench-scale experiment for control of hydrogen sulfide (H2S) emissions was carried out continuously for nearly four months by using bio-trickling filter packed with ZX01 stuffing. The results suggested that the bio-trickling filter had proven excellent performance over substantial operational periods. Removal efficiency of H2S was nearly 100% when volumetric loading of the bio-trickling filter varied from 0.64 g/(m^3·h) to 38.20 g/(m^3·h) and metabolism products of H2S were mainly composed of SO4^2-. When inlet concentration of H2S was 250 mg/m^3, the optimum gas retention time was 30 s and the optimum spray water flow rate was 0.005 9-0.012 L/(cm^2·h). The bio-trickling filter had good ability to resist shock of high volumetric loading, and was not blocked during experiments for nearly four months during which resistance was maintained at relatively lower value, so that the bio-trickling filter need not carry out back washing frequently and can be operated steadily for long-term.展开更多
The use of a biotrickling filter was investigated for a pilot field-scale elimination of NH3 gas and other odorous gases from a composting plant in Tongzhou District, Beijing. The inlet gas flow rate was 3500 m3/h and...The use of a biotrickling filter was investigated for a pilot field-scale elimination of NH3 gas and other odorous gases from a composting plant in Tongzhou District, Beijing. The inlet gas flow rate was 3500 m3/h and NH3 concentration fluctuated between 2.76–27.84 mg/m3, while the average outlet concentration was 1.06 mg/m3 with an average of 94.9% removal. Critical volumetric loading (removal efficiency=100%) was 11.22 g-N/(m3·h). The odor concentration removal was 86.7%. NH3 removal efficiency decreased as the free ammonia (FA) in the trickling liquid increased. The pressure drop was maintained at about 50 Pa/m and was never more than 55 Pa/m. During the experiment, there was neither backflushing required nor any indication of clogging. Overall, the biotrickling filter was highly efficient and cost-effective for the simultaneous biodegradation of NH3 and other odorous gases from composting, suggesting the possibility of treating odorous gases at the industrial level.展开更多
Aiming to reduce the energy input, oxygen supply by trickling filter was employed in a biocathode microbial fuel cell(MFC) to examine its performance of electricity production and sewage treatment. During batch operat...Aiming to reduce the energy input, oxygen supply by trickling filter was employed in a biocathode microbial fuel cell(MFC) to examine its performance of electricity production and sewage treatment. During batch operation, trickling MFC(TMFC) could start and aerate effectively(DO>3.60 mg/L). During continuous operation, TMFC produced a maximum current density of 71.8 A/m^3 and maximum power density of 26.2 W/m^3 under the hydraulic retention time(HRT) of 10 h. By increasing the HRT to 15 h, 90.6% of COD and 99.0% of ammonia in simulated domestic sewage were efficiently removed and the maximum power density was 19.4 W/m^3. Continuous purification of real municipal wastewater achieved 85.9% of COD removal rate and 91.6%of ammonia removal rate. Sequencing result of biocathodic microorganisms indicated that it consisted of four major classes and the dominant class was γ-proteobacteria, which accounted for up to 84.38%. The dominant genus was Acinetobacter, which accounted for 57.81%. The phylogenetic tree showed different relationships among the 19 species of biocathode microorganisms and the predominant species was Acinetobacter calcoaceticus.展开更多
文摘Simultaneous removal of hydrogen sulfide (H2S) and volatile organic sulfur compounds (VOSCs) in off-gas mixture from a wastewater treatment plant (WWTP) is difficult due to the occasional inhibitory effects of H2S on VOSC degradation. In this study, a two-stage bio-trickling filter (BTF) system was developed to treat off-gas mixture from a real WWTP facility. At an empty bed retention time of 40 s, removal efficiencies of H2S, methanethiol, dimethyl sulfide, and dimethyl disulfide were 90.1, 88.4, 85.8 and 61.8%, respectively. Furthermore, the effect of lifting load shock on system performance was investigated and results indicated that removal of both H2S and VOSCs was slightly affected. Illumina Miseq sequencing revealed that the microbial community of first-stage BTF contained high abundance of H2S-affinity genera including Acidithiobacillus (51.43%), Metallibacterium (25.35%), and Thionomas (8.08%). Analysis of mechanism demonstrated that first stage of BTF removed 86.1% of H2S, mitigating the suppression on VOSC degradation in second stage of BTF. Overall, the twostage BTF system, an innovative bioprocess, can simultaneously remove H2S and VOSC.
基金Project (NDP2005UU) supported by UK EA National Demonstration Program on EDC removalProject (50808183) supported by the National Natural Science Foundation of ChinaProjects (CSTC2008BB7047,CSTC2009BB030) supported by the Natural Science Foundation of Chongqing,China
文摘The discharge of steroid estroens from sewage treatment works (STW) is to be regulated by Environmental Quality Standard in the UK,thus requiring the understanding of removal characteristics of steroid estroens in trickling filters to benefit UK water industry with trickling filters used in 75% STWs. Two pilot-scale trickling filters were operated in parallel to treat synthetic sewage spiked with oestrone (E1),oestradiol (E2) and 17α-ethinyl oestradiol (EE2) at environmentally related concentrations. Control experiments show that biodegradation is the dominant removal mechanism although adsorption onto biofilm solids prior to biodegradation would be part of the overall mechanisms of estrogen removal. Approximately 44.7%-58.9% is removed by the pilot trickling filter normally operated,whilst the 1:1 recirculation increases 29.0%-32.2% estrogen removals by improved wetting rate and hydraulic retention time supported by tracer experiment with lithium chloride. Extra feed solids with 32.0% higher suspended solids levels inhibited estrogen removals by 10.8%-34.4% rather than helping bridge adsorption to the biofilm,and the change of particle characteristics with higher adsorption potency would benefit the removal.
基金Project supported by the Foundation for Scientific Research Col-laborating with Overseas Scholar of Heilongjiang Province, China (No. WC03305)the Foundation for Science and Technology of Harbin City, China (No. 2002AA4CS087)
文摘A bench-scale experiment for control of hydrogen sulfide (H2S) emissions was carried out continuously for nearly four months by using bio-trickling filter packed with ZX01 stuffing. The results suggested that the bio-trickling filter had proven excellent performance over substantial operational periods. Removal efficiency of H2S was nearly 100% when volumetric loading of the bio-trickling filter varied from 0.64 g/(m^3·h) to 38.20 g/(m^3·h) and metabolism products of H2S were mainly composed of SO4^2-. When inlet concentration of H2S was 250 mg/m^3, the optimum gas retention time was 30 s and the optimum spray water flow rate was 0.005 9-0.012 L/(cm^2·h). The bio-trickling filter had good ability to resist shock of high volumetric loading, and was not blocked during experiments for nearly four months during which resistance was maintained at relatively lower value, so that the bio-trickling filter need not carry out back washing frequently and can be operated steadily for long-term.
基金Project supported by the National Natural Science and Technology Pillar Program in the Eleventh Five-year Plan Period (No. 2006BAJ04A06)the Special Item of System Reformation of the Beijing Municipal Science and Technology Commission, China
文摘The use of a biotrickling filter was investigated for a pilot field-scale elimination of NH3 gas and other odorous gases from a composting plant in Tongzhou District, Beijing. The inlet gas flow rate was 3500 m3/h and NH3 concentration fluctuated between 2.76–27.84 mg/m3, while the average outlet concentration was 1.06 mg/m3 with an average of 94.9% removal. Critical volumetric loading (removal efficiency=100%) was 11.22 g-N/(m3·h). The odor concentration removal was 86.7%. NH3 removal efficiency decreased as the free ammonia (FA) in the trickling liquid increased. The pressure drop was maintained at about 50 Pa/m and was never more than 55 Pa/m. During the experiment, there was neither backflushing required nor any indication of clogging. Overall, the biotrickling filter was highly efficient and cost-effective for the simultaneous biodegradation of NH3 and other odorous gases from composting, suggesting the possibility of treating odorous gases at the industrial level.
基金supported by the National Natural Science Foundation of China(Grant Nos.51422810,51679041)
文摘Aiming to reduce the energy input, oxygen supply by trickling filter was employed in a biocathode microbial fuel cell(MFC) to examine its performance of electricity production and sewage treatment. During batch operation, trickling MFC(TMFC) could start and aerate effectively(DO>3.60 mg/L). During continuous operation, TMFC produced a maximum current density of 71.8 A/m^3 and maximum power density of 26.2 W/m^3 under the hydraulic retention time(HRT) of 10 h. By increasing the HRT to 15 h, 90.6% of COD and 99.0% of ammonia in simulated domestic sewage were efficiently removed and the maximum power density was 19.4 W/m^3. Continuous purification of real municipal wastewater achieved 85.9% of COD removal rate and 91.6%of ammonia removal rate. Sequencing result of biocathodic microorganisms indicated that it consisted of four major classes and the dominant class was γ-proteobacteria, which accounted for up to 84.38%. The dominant genus was Acinetobacter, which accounted for 57.81%. The phylogenetic tree showed different relationships among the 19 species of biocathode microorganisms and the predominant species was Acinetobacter calcoaceticus.