The incorporation of B element into π-conjugated system is an efficient strategy to tune the steric and electronic structure and thus optoelectronic properties of π-electron systems.The vacant p orbital on the trico...The incorporation of B element into π-conjugated system is an efficient strategy to tune the steric and electronic structure and thus optoelectronic properties of π-electron systems.The vacant p orbital on the tricoordinate B center makes it exhibit several electronic and steric features,such as electron-accepting ability through p-π~* conjugation,the high Lewis acidity to coordinate with Lewis bases,as well as the steric bulk arising from the aryl substituent on the B center to get enough kinetic stability.As a result,the boryl group is a very unique electron acceptor.When an electron-donating amino group is present,the triarylboranes would display intense intramolecular charge transfer transitions,which lead to interesting optoelectronic properties and great utilities.This short review summarizes the recent progress in π-electron systems,which contain both B and N elements and thus display intramolecular charge-transfer transitions.The triarylboranes are introduced based on their structural features,including the linear π-system with boryl and amino groups at the terminal positions,the lateral borylsubstituted π-system with amino groups at the terminal positions,the biphenyl π-system with an amino and a boryl groups at o,o'-positions,nonconjugated U- and V-shaped π-system,macrocylcic π-system with B and N embedded in the ring,B,N-bridged ladder-type π-system,as well as the polycyclicπ-system with B embedded in the center.展开更多
In this work, density functional theory (DFT) combined with the finite field (FF) method has been adopted to analyze the second-order nonlinear optical (NLO) properties of the triarylborane (TAB) derivatives obtained ...In this work, density functional theory (DFT) combined with the finite field (FF) method has been adopted to analyze the second-order nonlinear optical (NLO) properties of the triarylborane (TAB) derivatives obtained by introducing different inductive electron groups into the phenylene ring of the TAB (RTAB, where R=2-C6H5-C2B10H10(1),R=F(2), R=Me(3),R=NO2(4),R=NH2(5)). The static first hyperpolarizabilities (βtot) of the RTAB molecules can be switched by binding one F- to the boron center (RTAB′) or one-electron reduction (RTAB"). The DFT-FF calculations show that the βtot values of 2′, 3′ and 5′ decrease while those of 1′ and 4′ increase compared with the values of their neutral molecules, which was attributed to the fact that the charge transfers of 2, 3 and 5 become smaller and those of 1 and 4 become larger by binding one F- ion to the boron center, according to time-domain DFT (TD-DFT) analysis. However, the incorporation of one electron enhances the second-order NLO properties of the RTAB molecules remarkably, especially for system 1. It is notable that the βtot value of reduced form 1″ is 508.69×10-30 esu, i.e. about 578 times larger than that of system 1. Frontier molecular orbital (FMO) and natural bond orbital (NBO) analyses suggest that the reversal of the charge distribution between the neutral molecules and their reduced forms leads to low HOMO-LUMO energy gaps (E0) and thus large βtot values for the reduced forms.展开更多
Highly efficient persistent organic room temperature phosphorescence(RTP) has attracted increasing attention because of promising applications in fields of chemical sensors, optoelectronic devices, information securit...Highly efficient persistent organic room temperature phosphorescence(RTP) has attracted increasing attention because of promising applications in fields of chemical sensors, optoelectronic devices, information security, and bioimaging, etc. Wherein,the crystal engineering of H-aggregation offers stabilization for long-lived triplet exciton for RTP, but the related research is rare because of the scarcity of ideal phosphorescent H-aggregate. Herein, we designed planar tricoordinate organoboron derivatives with molecular arrangement in ideal H-aggregation. The integration of Br atom can largely enhance RTP efficiency through increasing SOC effect, while the antiparallel molecular arrangement causes annihilation of triplet exciton. Thanks to good selfassembly property, their RTP can even be observed in PMMA matrix with doping ratio of merely 1 wt%. We further found that the cryogenic temperature contributes to stabilizing triplet exciton in H-aggregation, leading to red-shifted phosphorescence. By applying high hydrostatic pressure, the phosphorescence was largely enhanced and redshifted, demonstrating the crucial role of H-aggregation on RTP property. In phosphorescent tissue imaging of live mouse, nanoparticles of BrBA exhibited high contrast image via eliminating the interference of autofluorescence.展开更多
基金the National Natural Science Foundation of China(Nos.21072117,21272141,21572120)for financial support
文摘The incorporation of B element into π-conjugated system is an efficient strategy to tune the steric and electronic structure and thus optoelectronic properties of π-electron systems.The vacant p orbital on the tricoordinate B center makes it exhibit several electronic and steric features,such as electron-accepting ability through p-π~* conjugation,the high Lewis acidity to coordinate with Lewis bases,as well as the steric bulk arising from the aryl substituent on the B center to get enough kinetic stability.As a result,the boryl group is a very unique electron acceptor.When an electron-donating amino group is present,the triarylboranes would display intense intramolecular charge transfer transitions,which lead to interesting optoelectronic properties and great utilities.This short review summarizes the recent progress in π-electron systems,which contain both B and N elements and thus display intramolecular charge-transfer transitions.The triarylboranes are introduced based on their structural features,including the linear π-system with boryl and amino groups at the terminal positions,the lateral borylsubstituted π-system with amino groups at the terminal positions,the biphenyl π-system with an amino and a boryl groups at o,o'-positions,nonconjugated U- and V-shaped π-system,macrocylcic π-system with B and N embedded in the ring,B,N-bridged ladder-type π-system,as well as the polycyclicπ-system with B embedded in the center.
基金supported by the National Natural Science Foundation of China (20873017)the Natural Science Foundation of Jilin Province(20101154)
文摘In this work, density functional theory (DFT) combined with the finite field (FF) method has been adopted to analyze the second-order nonlinear optical (NLO) properties of the triarylborane (TAB) derivatives obtained by introducing different inductive electron groups into the phenylene ring of the TAB (RTAB, where R=2-C6H5-C2B10H10(1),R=F(2), R=Me(3),R=NO2(4),R=NH2(5)). The static first hyperpolarizabilities (βtot) of the RTAB molecules can be switched by binding one F- to the boron center (RTAB′) or one-electron reduction (RTAB"). The DFT-FF calculations show that the βtot values of 2′, 3′ and 5′ decrease while those of 1′ and 4′ increase compared with the values of their neutral molecules, which was attributed to the fact that the charge transfers of 2, 3 and 5 become smaller and those of 1 and 4 become larger by binding one F- ion to the boron center, according to time-domain DFT (TD-DFT) analysis. However, the incorporation of one electron enhances the second-order NLO properties of the RTAB molecules remarkably, especially for system 1. It is notable that the βtot value of reduced form 1″ is 508.69×10-30 esu, i.e. about 578 times larger than that of system 1. Frontier molecular orbital (FMO) and natural bond orbital (NBO) analyses suggest that the reversal of the charge distribution between the neutral molecules and their reduced forms leads to low HOMO-LUMO energy gaps (E0) and thus large βtot values for the reduced forms.
基金supported by the National Natural Science Foundation of China(21905198)the Starting Grants of Tianjin University,Tianjin Government.
文摘Highly efficient persistent organic room temperature phosphorescence(RTP) has attracted increasing attention because of promising applications in fields of chemical sensors, optoelectronic devices, information security, and bioimaging, etc. Wherein,the crystal engineering of H-aggregation offers stabilization for long-lived triplet exciton for RTP, but the related research is rare because of the scarcity of ideal phosphorescent H-aggregate. Herein, we designed planar tricoordinate organoboron derivatives with molecular arrangement in ideal H-aggregation. The integration of Br atom can largely enhance RTP efficiency through increasing SOC effect, while the antiparallel molecular arrangement causes annihilation of triplet exciton. Thanks to good selfassembly property, their RTP can even be observed in PMMA matrix with doping ratio of merely 1 wt%. We further found that the cryogenic temperature contributes to stabilizing triplet exciton in H-aggregation, leading to red-shifted phosphorescence. By applying high hydrostatic pressure, the phosphorescence was largely enhanced and redshifted, demonstrating the crucial role of H-aggregation on RTP property. In phosphorescent tissue imaging of live mouse, nanoparticles of BrBA exhibited high contrast image via eliminating the interference of autofluorescence.