An increase in energy efficiency and a reduction of carbon emissions in buildings are prerequisites for mitigating climate change. Public buildings should be energy-refurbished for minimizing their energy use, complyi...An increase in energy efficiency and a reduction of carbon emissions in buildings are prerequisites for mitigating climate change. Public buildings should be energy-refurbished for minimizing their energy use, complying with EU legislation and directives. The creation of net zero carbon emissions prisons in Crete, Greece with reference to the agricultural prison of Agia has been examined. The prison’s capacity is 178 offenders and the annual energy consumption has been estimated at 4000 KWh/prisoner. The use of a solar thermal system for hot water production and a solar-PV system for electricity generation has been proposed for generating the energy required in the prison. Two scenarios have been examined. In the first, the two solar energy systems would generate all the required energy in the prison, while in the second, the two solar energy systems would generate 50% of the annual required energy in the prison, and the rest would be produced by fossil fuels. A tree plantation, either with olive trees or with Eucalyptus trees, would be created for offsetting the carbon emissions due to fossil fuels used in the prison. The surface of the flat plate solar collectors in the solar thermal system has been estimated at 113.9 M<sup>2</sup> to 227.8 M<sup>2</sup> while its cost is at 34,170€ to 68,340€. The nominal power of the solar-PV system has been estimated at 151.9 KW<sub>p</sub> to 303.8 KW<sub>p</sub> while its cost is at 182,280€ to 364,560€. The area of the tree plantation sequestrating 50% of the current CO<sub>2</sub> emissions due to fossil fuels use in the prison has been estimated at 14.74 ha for olive trees and at 5.9 ha for Eucalyptus trees. The results indicated that the energy refurbishment in Agia’s agricultural prison in Crete, Greece, in order to zero its annual net carbon emissions, is feasible.展开更多
When conditions are similar,more water evaporates from forest plantations than herbaceous vegetation,thereby affecting hydrological fluxes and ion transport in the soil.The vertical distribution of CaCO3 and Cl^-ions ...When conditions are similar,more water evaporates from forest plantations than herbaceous vegetation,thereby affecting hydrological fluxes and ion transport in the soil.The vertical distribution of CaCO3 and Cl^-ions shifts due to afforestation.The effect of groundwater depth and clay content were studied in the Great Hungarian Plain where forest area has been increasing for decades by analyzing soil and groundwater samples from stands of black locust(Robinia pseudoacacia,11 plots)and poplar(Populus spp.,11 plots).All study sites contained one herbaceous(control)and one or more forested plots.CaCO3 and Cl^-ions accumulated in the soil profile in greater quantities under tree cover than in the controls.The scale of this process largely depended on the species and on soil and ion properties.Under black locust,Cl^-accumulated between 1.3 and 6.3 m,with a maximum difference of 0.3 pCl unit(pCl is Cl^-activity,the negative of the logarithm to base 10 of the concentration of the chloride ion,determined using an ion-selective electrode,it is a dimensionless quantity.),while the difference in CaCO3 accumulation was at most 3.5%in some layers,compared to control plots.This result may be explained by the difference in the mobility of Ca+and Cl^-ions.Different mechanisms were noticeable under poplar plantations due to their higher water uptake:Cl-accumulation was detected below 0.9 m to the groundwater with a maximum difference of 0.5 pCl units,while CaCO3 accumulation was continuous at depths of 2.3–6.8 m with a maximum difference of 8.4%,compared to the controls.With increasing clay content,there was a discernible effect on CaCO3 and Cl-accumulation under black locust,but not observed under poplars.These differences were explained by the differences in water uptake mechanisms and root patterns of the two species and the different mobility of Ca2^+and Cl-ions.展开更多
文摘An increase in energy efficiency and a reduction of carbon emissions in buildings are prerequisites for mitigating climate change. Public buildings should be energy-refurbished for minimizing their energy use, complying with EU legislation and directives. The creation of net zero carbon emissions prisons in Crete, Greece with reference to the agricultural prison of Agia has been examined. The prison’s capacity is 178 offenders and the annual energy consumption has been estimated at 4000 KWh/prisoner. The use of a solar thermal system for hot water production and a solar-PV system for electricity generation has been proposed for generating the energy required in the prison. Two scenarios have been examined. In the first, the two solar energy systems would generate all the required energy in the prison, while in the second, the two solar energy systems would generate 50% of the annual required energy in the prison, and the rest would be produced by fossil fuels. A tree plantation, either with olive trees or with Eucalyptus trees, would be created for offsetting the carbon emissions due to fossil fuels used in the prison. The surface of the flat plate solar collectors in the solar thermal system has been estimated at 113.9 M<sup>2</sup> to 227.8 M<sup>2</sup> while its cost is at 34,170€ to 68,340€. The nominal power of the solar-PV system has been estimated at 151.9 KW<sub>p</sub> to 303.8 KW<sub>p</sub> while its cost is at 182,280€ to 364,560€. The area of the tree plantation sequestrating 50% of the current CO<sub>2</sub> emissions due to fossil fuels use in the prison has been estimated at 14.74 ha for olive trees and at 5.9 ha for Eucalyptus trees. The results indicated that the energy refurbishment in Agia’s agricultural prison in Crete, Greece, in order to zero its annual net carbon emissions, is feasible.
基金founded by a grant from Hungarian Scientific Research Found(OTKA NN 79835) projectthe Postdoctoral Research Program of the Hungarian Academy of Sciences(PD-029/2015)
文摘When conditions are similar,more water evaporates from forest plantations than herbaceous vegetation,thereby affecting hydrological fluxes and ion transport in the soil.The vertical distribution of CaCO3 and Cl^-ions shifts due to afforestation.The effect of groundwater depth and clay content were studied in the Great Hungarian Plain where forest area has been increasing for decades by analyzing soil and groundwater samples from stands of black locust(Robinia pseudoacacia,11 plots)and poplar(Populus spp.,11 plots).All study sites contained one herbaceous(control)and one or more forested plots.CaCO3 and Cl^-ions accumulated in the soil profile in greater quantities under tree cover than in the controls.The scale of this process largely depended on the species and on soil and ion properties.Under black locust,Cl^-accumulated between 1.3 and 6.3 m,with a maximum difference of 0.3 pCl unit(pCl is Cl^-activity,the negative of the logarithm to base 10 of the concentration of the chloride ion,determined using an ion-selective electrode,it is a dimensionless quantity.),while the difference in CaCO3 accumulation was at most 3.5%in some layers,compared to control plots.This result may be explained by the difference in the mobility of Ca+and Cl^-ions.Different mechanisms were noticeable under poplar plantations due to their higher water uptake:Cl-accumulation was detected below 0.9 m to the groundwater with a maximum difference of 0.5 pCl units,while CaCO3 accumulation was continuous at depths of 2.3–6.8 m with a maximum difference of 8.4%,compared to the controls.With increasing clay content,there was a discernible effect on CaCO3 and Cl-accumulation under black locust,but not observed under poplars.These differences were explained by the differences in water uptake mechanisms and root patterns of the two species and the different mobility of Ca2^+and Cl-ions.