through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is ...through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is orientation of the incident quadruple beam related quadruple mode may be obtained. The localized optical vortex (DCV) during rotation and should reversed.展开更多
We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photoni...We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photonic band gap model, and the two independent photonic band gaps model), we note that the final values of entanglement trapping are determined by these different models. We also give the conditions of obtaining the larger entanglement trapping by comparing two-qubit entanglement dynamics in different decoherence models. Moreover, the comparison of entanglement trapping between two Bell-like states in the same decoherence model are also carried out.展开更多
基金supported by the National"973"Program of China(Nos.2013CB632703 and 2013CB328702)the National Natural Science Foundation of China(Nos.60908002 and 10904078)+4 种基金the International S&T Cooperation Program of China(No.2011DFA52870)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120031120031)the International Cooperation Program of Tianjin(No.11ZGHHZ01000)the"111"Project(No.B07013)the Program for New Century Excellent Talents in University(No.NCET-10-0507)
文摘through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is orientation of the incident quadruple beam related quadruple mode may be obtained. The localized optical vortex (DCV) during rotation and should reversed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 11247240)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123705120002)+3 种基金the Open Project of State Key Laboratory of Crystal Material in Shandong University, China (Grant No. KF1103)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024)the Youth Funds from Qufu Normal University, China (Grant No. XJ201219)the Scientific Research Foundation for Doctors of Qufu Normal University, China (Grant No. BSQD20110132)
文摘We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photonic band gap model, and the two independent photonic band gaps model), we note that the final values of entanglement trapping are determined by these different models. We also give the conditions of obtaining the larger entanglement trapping by comparing two-qubit entanglement dynamics in different decoherence models. Moreover, the comparison of entanglement trapping between two Bell-like states in the same decoherence model are also carried out.