The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The va...The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach.展开更多
Trapezoidal shaping method is widely applied to pulse amplitude extraction in digital nuclear spectrometer system,the optimal selection of the shaping parameters can improve the energy resolution and pulse counting ra...Trapezoidal shaping method is widely applied to pulse amplitude extraction in digital nuclear spectrometer system,the optimal selection of the shaping parameters can improve the energy resolution and pulse counting rate.From the view of noise characteristics,ballistic deficit compensation characteristics and pulse pile-up characteristics,in this paper the optimal selection of the trapezoidal shaping parameters is studied on.According to the theoretical analysis and experimental verification,the optimal choice of trapezoidal shaping parameters is similar to the triangle,the rise time is longer and the flat-top width is shorter.展开更多
Trapezoidal pulse shaping algorithm is widely applied to improve signal-to-noise ratio(SNR), throughput and energy resolution with the properties of noise suppression, pile-up pulse separation and ballistic deficit co...Trapezoidal pulse shaping algorithm is widely applied to improve signal-to-noise ratio(SNR), throughput and energy resolution with the properties of noise suppression, pile-up pulse separation and ballistic deficit correction. The algorithm can be acquired by z transform method which is easier for derivation. However, the baseline drift of trapezoidal pulse appears because the noise superimposes on the input signal. In this paper,two new methods based on convergence analysis and noise suppression are proposed to remove the baseline drift resulting from trapezoidal pulse shaping. Simulations and experimental tests are carried out to verify the methods. The results demonstrate that the proposed methods can remove baseline drift in trapezoidal pulse shaping.展开更多
文摘The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach.
基金Supported by National High Technology Research and Development Program of China(Nos.2012AA061804 and 2012AA061803)East China Institute of Technology Science Foundation(No.DHBK201111)Open-ended Foundation(No.HJSJYB2011-18)from the Chinese Engineering Research Center
文摘Trapezoidal shaping method is widely applied to pulse amplitude extraction in digital nuclear spectrometer system,the optimal selection of the shaping parameters can improve the energy resolution and pulse counting rate.From the view of noise characteristics,ballistic deficit compensation characteristics and pulse pile-up characteristics,in this paper the optimal selection of the trapezoidal shaping parameters is studied on.According to the theoretical analysis and experimental verification,the optimal choice of trapezoidal shaping parameters is similar to the triangle,the rise time is longer and the flat-top width is shorter.
基金Supported by National High Technology Research and Development Program of China(863 Program)(No.2012AA061804-03)
文摘Trapezoidal pulse shaping algorithm is widely applied to improve signal-to-noise ratio(SNR), throughput and energy resolution with the properties of noise suppression, pile-up pulse separation and ballistic deficit correction. The algorithm can be acquired by z transform method which is easier for derivation. However, the baseline drift of trapezoidal pulse appears because the noise superimposes on the input signal. In this paper,two new methods based on convergence analysis and noise suppression are proposed to remove the baseline drift resulting from trapezoidal pulse shaping. Simulations and experimental tests are carried out to verify the methods. The results demonstrate that the proposed methods can remove baseline drift in trapezoidal pulse shaping.