We propose a process of quantum-confined ion superfluid (QISF),which is enthalpy-driven confined ordered fluid,to explain the transmission of nerve signals.The ultrafast Na^+ and K^+ ions transportation through all so...We propose a process of quantum-confined ion superfluid (QISF),which is enthalpy-driven confined ordered fluid,to explain the transmission of nerve signals.The ultrafast Na^+ and K^+ ions transportation through all sodium-potassium pump nanochannels simultaneously in the membrane is without energy loss,and leads to QISF wave along the neuronal axon,which acts as an information medium in the ultrafast nerve signal transmission.The QISF process will not only provide a new view point for a reasonable explanation of ultrafast signal transmission in the nerves and brain,but also challenge the theory of matter wave for ions,molecules and particles.展开更多
基金the National Natural Science Foundation of China (Nos.51603211 and 51673107)the National Key R&D Program of China (No.2016YFA0200803)the 111 Project (No.B1 4009).
文摘We propose a process of quantum-confined ion superfluid (QISF),which is enthalpy-driven confined ordered fluid,to explain the transmission of nerve signals.The ultrafast Na^+ and K^+ ions transportation through all sodium-potassium pump nanochannels simultaneously in the membrane is without energy loss,and leads to QISF wave along the neuronal axon,which acts as an information medium in the ultrafast nerve signal transmission.The QISF process will not only provide a new view point for a reasonable explanation of ultrafast signal transmission in the nerves and brain,but also challenge the theory of matter wave for ions,molecules and particles.